test_complex_grad_accumulated.py 4.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np

import paddle

import paddle.fluid.core as core
23
from paddle.fluid.framework import _test_eager_guard
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72


class Optimization_ex1(paddle.nn.Layer):
    def __init__(self,
                 shape,
                 dtype,
                 param_attr=paddle.nn.initializer.Uniform(
                     low=-5., high=5.)):
        super(Optimization_ex1, self).__init__()

        self.theta0 = self.create_parameter(
            shape=shape, attr=param_attr, dtype=dtype, is_bias=False)
        self.theta1 = self.create_parameter(
            shape=shape, attr=param_attr, dtype=dtype, is_bias=False)
        self.A = paddle.to_tensor(
            np.random.random((4, 4)).astype(dtype) + np.random.random((4, 4))
            .astype(dtype) * 1j)
        self.B = paddle.to_tensor(
            np.random.random((4, 4)).astype(dtype) + np.random.random(
                (4, 4)).astype(dtype) * 1j,
            stop_gradient=False)

    def forward(self, mode=1):
        jj = paddle.to_tensor(np.array([1j]).astype(np.complex64))
        if mode == 1:
            # run all calc in one step
            loss = paddle.sum(self.A + (self.theta0 + self.theta1 * jj)) * (
                paddle.sum(self.A + (self.theta0 + self.theta1 * jj)).conj())
            return loss.real()
        elif mode == 2:
            # run in two step
            self.theta = self.theta0 + self.theta1 * jj
            loss = paddle.sum(self.A + self.theta) * (
                paddle.sum(self.A + self.theta).conj())
            return loss.real()
        elif mode == 3:
            # run without param
            loss = paddle.sum(self.A + self.B) * (
                paddle.sum(self.A + self.B).conj())
            return loss.real()
        else:
            raise NotImplementedError


class TestComplexGradAccumulated(unittest.TestCase):
    def setUp(self):
        self.devices = ['cpu']
        if core.is_compiled_with_cuda():
            self.devices.append('gpu')
73 74
        self.iter = 3
        self.learning_rate = 0.5
75 76 77
        self.dtypes = ['float32', 'float64']
        self.theta_size = [4, 4]

78
    def train(self, device, dtype, mode):
79 80 81
        paddle.set_device(device)

        myLayer = Optimization_ex1(self.theta_size, dtype)
82 83
        optimizer = paddle.optimizer.SGD(learning_rate=self.learning_rate,
                                         parameters=myLayer.parameters())
84

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
        for iter in range(self.iter):
            loss = myLayer(mode)
            loss.backward()

            optimizer.step()
            optimizer.clear_grad()

    def train_no_clear_grad(self, device, dtype, mode):
        paddle.set_device(device)

        myLayer = Optimization_ex1(self.theta_size, dtype)
        optimizer = paddle.optimizer.SGD(learning_rate=self.learning_rate,
                                         parameters=myLayer.parameters())

        for iter in range(self.iter):
            loss = myLayer(mode)
            loss.backward()

            optimizer.step()
104 105 106 107

    def test_case_one_step(self):
        for dev in self.devices:
            for dtype in self.dtypes:
108 109
                self.train(dev, dtype, 1)
                self.train_no_clear_grad(dev, dtype, 1)
110 111 112 113

    def test_case_two_step(self):
        for dev in self.devices:
            for dtype in self.dtypes:
114 115
                self.train(dev, dtype, 2)
                self.train_no_clear_grad(dev, dtype, 2)
116 117 118 119

    def test_case_non_param(self):
        for dev in self.devices:
            for dtype in self.dtypes:
120 121
                self.train(dev, dtype, 3)
                self.train_no_clear_grad(dev, dtype, 3)
122

123 124 125 126 127 128
    def test_eager(self):
        with _test_eager_guard():
            self.test_case_one_step()
            self.test_case_two_step()
            self.test_case_non_param()

129 130 131

if __name__ == '__main__':
    unittest.main()