adam_op.cc 8.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/framework/op_version_registry.h"
16 17 18 19 20

#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/multiary.h"
21 22 23 24

namespace paddle {
namespace operators {

D
dzhwinter 已提交
25
using Tensor = framework::Tensor;
26

27 28 29
class AdamOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
30

31 32 33 34 35
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const {
    auto input_data_type =
        OperatorWithKernel::IndicateVarDataType(ctx, "Param");
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
36
  }
Y
Yibing Liu 已提交
37

38 39 40 41 42 43 44 45 46 47
  framework::OpKernelType GetKernelTypeForVar(
      const std::string &var_name, const framework::Tensor &tensor,
      const framework::OpKernelType &expected_kernel_type) const {
    if (var_name == "Beta1Pow" || var_name == "Beta2Pow" ||
        var_name == "SkipUpdate") {
      return expected_kernel_type;
    } else {
      return framework::OpKernelType(expected_kernel_type.data_type_,
                                     tensor.place(), tensor.layout());
    }
48
  }
49
};
50

51 52
class AdamOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
53
  void Make() override {
54 55 56 57 58 59 60 61
    AddInput("Param", "(Tensor) Input parameter");
    AddInput("Grad", "(Tensor) Input gradient");
    AddInput("LearningRate", "(Tensor) Learning rate");
    AddInput("Moment1", "(Tensor) Input first moment");
    AddInput("Moment2", "(Tensor) Input second moment");
    AddInput("Beta1Pow", "(Tensor) Input beta1 power accumulator");
    AddInput("Beta2Pow", "(Tensor) Input beta2 power accumulator");

62 63 64 65 66 67 68 69 70 71
    AddInput("Beta1Tensor",
             "(Tensor<float32>, optional) If provided, Adam will use this "
             "as beta1, this has a higher priority than attr(beta1), the "
             "shape of this tensor MUST BE [1].")
        .AsDispensable();
    AddInput("Beta2Tensor",
             "(Tensor<float32>, optional) If provided, Adam will use this "
             "as beta2, this has a higher priority than attr(beta2), the "
             "shape of this tensor MUST BE [1].")
        .AsDispensable();
72 73 74 75 76
    AddInput("EpsilonTensor",
             "(Tensor<float32>, optional) If provided, Adam will use this "
             "as epsilon, this has a higher priority than attr(epsilon), the "
             "shape of this tensor MUST BE [1].")
        .AsDispensable();
77
    AddInput("MasterParam", "FP32 master weight for AMP.").AsDispensable();
78 79
    AddInput("SkipUpdate", "(Tensor<bool>, optional), Skip the update or not.")
        .AsDispensable();
80

81 82 83
    AddOutput("ParamOut", "(Tensor) Output parameter");
    AddOutput("Moment1Out", "(Tensor) Output first moment");
    AddOutput("Moment2Out", "(Tensor) Output second moment");
A
Aurelius84 已提交
84 85
    AddOutput("Beta1PowOut", "(Tensor) Output beta1 power accumulator");
    AddOutput("Beta2PowOut", "(Tensor) Output beta2 power accumulator");
86 87 88 89
    AddOutput("MasterParamOut",
              "The updated FP32 master weight for AMP. "
              "It shared memory with Input(MasterParam).")
        .AsDispensable();
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104

    AddAttr<float>("beta1",
                   "(float, default 0.9) "
                   "Exponential decay rate for the "
                   "first moment estimates.")
        .SetDefault(0.9f);
    AddAttr<float>("beta2",
                   "(float, default 0.999) "
                   "exponential decay rate for the "
                   "second moment estimates.")
        .SetDefault(0.999f);
    AddAttr<float>("epsilon",
                   "(float, default 1.0e-8) "
                   "Constant for numerical stability")
        .SetDefault(1.0e-8f);
Q
Qiao Longfei 已提交
105
    AddAttr<bool>(
Q
Qiao Longfei 已提交
106
        "lazy_mode",
Q
Qiao Longfei 已提交
107 108 109
        "(bool, default false) "
        "only update the parameter that has gradient in sparse update")
        .SetDefault(false);
110 111 112 113 114 115
    AddAttr<int64_t>("min_row_size_to_use_multithread",
                     "(int64_t, default 0) "
                     "when not zero, if param row size is larger then "
                     "min_row_size_to_use_multithread and "
                     "inner_op_parallelism is larger then 0, sparse update "
                     "will run in multithread mode")
116
        .SetDefault(1000);
117 118 119 120
    AddAttr<bool>("multi_precision",
                  "(bool, default false) "
                  "Whether to use multi-precision during weight updating.")
        .SetDefault(false);
121 122 123 124 125 126 127
    // TODO(zhiqiu): We could set Beta1PowOut and Beta2PowOut
    // as dispensable since they are not used when use_global_beta_pow is true.
    AddAttr<bool>("use_global_beta_pow",
                  "(bool, default false) "
                  "Whether to use global beta_pow for whole model instead of "
                  "creating beta_pow for each parameter.")
        .SetDefault(false);
128 129

    AddComment(R"DOC(
130
Adam Optimizer.
131 132

This implements the Adam optimizer from Section 2 of the Adam
133 134 135
paper : https://arxiv.org/abs/1412.6980.
Adam is a first-order gradient-based optimization method based on
adaptive estimates of lower-order moments.
136 137 138

Adam updates:

139 140 141 142 143 144 145
$$
moment\_1\_out = \beta_1 * moment\_1 + (1 - \beta_1) * grad \\
moment\_2_\out = \beta_2 * moment\_2 + (1 - \beta_2) * grad * grad \\
learning\_rate = learning\_rate *
                  \frac{\sqrt{1 - \beta_{2\_pow}}}{1 - \beta_{1\_pow}} \\
param\_out = param - learning\_rate * \frac{moment\_1}{\sqrt{moment\_2} + \epsilon}
$$
146 147 148 149

)DOC");
  }
};
R
Roc 已提交
150

151 152 153 154
class AdamWOp : public AdamOp {
  using AdamOp::AdamOp;
};

R
Roc 已提交
155 156 157 158
class AdamWOpMaker : public AdamOpMaker {
 public:
  void Make() {
    AdamOpMaker::Make();
159 160 161 162
    AddAttr<float>("lr_ratio",
                   "(float, default 1.0) "
                   "layerwise learning rate decay")
        .SetDefault(1.0f);
R
Roc 已提交
163 164 165 166 167 168 169 170 171 172 173
    AddAttr<float>("coeff",
                   "(float, default 0.01) "
                   "coeff of the weight decay")
        .SetDefault(0.01f);
    AddAttr<bool>("with_decay",
                  "(bool, default false) "
                  "whether to do weight decay")
        .SetDefault(false);
  }
};

174 175 176 177
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
R
Roc 已提交
178

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
DECLARE_INFER_SHAPE_FUNCTOR(adam, AdamInferMetaFunctor,
                            PD_INFER_META(phi::AdamInferMeta));

REGISTER_OPERATOR(
    adam, ops::AdamOp, ops::AdamOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>,
    AdamInferMetaFunctor);

DECLARE_INFER_SHAPE_FUNCTOR(adamw, AdamwInferMetaFunctor,
                            PD_INFER_META(phi::AdamwInferMeta));
REGISTER_OPERATOR(
    adamw, ops::AdamWOp, ops::AdamWOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>,
    AdamwInferMetaFunctor);
195 196 197 198 199 200 201 202 203

REGISTER_OP_VERSION(adam)
    .AddCheckpoint(
        R"ROC(
      Upgrade adam add 1 attribute [multi_precision].
    )ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "multi_precision",
            "(bool) Whether to use multi-precision during weight updating.",
204 205 206 207 208 209 210 211 212
            false))
    .AddCheckpoint(
        R"ROC(
      Upgrade adam, add 1 dispensable input [EpsilonTensor].
    )ROC",
        paddle::framework::compatible::OpVersionDesc().NewInput(
            "EpsilonTensor",
            "If provided, Adam will use this as epsilon, "
            "this has a higher priority than attr(epsilon). "
213 214 215 216 217 218 219 220 221 222 223 224
            "For better performance in npu kernel. "))
    .AddCheckpoint(
        R"ROC(
      Upgrade adam, add 1 attribute [use_global_beta_pow].
    )ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "use_global_beta_pow",
            "If true, Adam will use global beta_pow for whole model "
            "instead of creating beta_pow for each parameter."
            "In that case, the outputs(Beta1PowOut, Beta2PowOut) will not be "
            "used in adam op, "
            "and beta_pow will be updated after all adam op in the model.",
225 226 227 228 229 230 231
            false))
    .AddCheckpoint(
        R"ROC(
      Upgrade adam, add 1 dispensable input [SkipUpdate].
    )ROC",
        paddle::framework::compatible::OpVersionDesc().NewInput(
            "SkipUpdate", "If the value is true, Adam will skip the update."));