selected_rows_functor.cc 33.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/math/selected_rows_functor.h"
16
#include "paddle/fluid/platform/device/device_wrapper.h"
17

L
lidanqing 已提交
18 19 20 21
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/operators/mkldnn/axpy_handler.h"
#endif

22 23 24 25
namespace paddle {
namespace operators {
namespace math {
template <typename T>
Q
QI JUN 已提交
26 27
struct SelectedRowsAdd<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
28 29
                  const phi::SelectedRows& input1,
                  const phi::SelectedRows& input2, phi::SelectedRows* output) {
30
    auto in1_height = input1.height();
31 32 33 34 35 36
    PADDLE_ENFORCE_EQ(
        in1_height, input2.height(),
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height  = "
                                          "[%d], second input height = [%d]",
                                          in1_height, input2.height()));
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
    output->set_height(in1_height);

    auto& in1_rows = input1.rows();
    auto& in2_rows = input2.rows();
    std::vector<int64_t> out_rows;
    out_rows.reserve(in1_rows.size() + in2_rows.size());

    // concat rows
    out_rows.insert(out_rows.end(), in1_rows.begin(), in1_rows.end());
    out_rows.insert(out_rows.end(), in2_rows.begin(), in2_rows.end());
    output->set_rows(out_rows);

    auto* out_value = output->mutable_value();
    auto& in1_value = input1.value();
    auto& in2_value = input2.value();

    auto in1_row_numel = in1_value.numel() / in1_rows.size();
54 55 56 57 58 59 60 61 62 63 64 65
    PADDLE_ENFORCE_EQ(
        in1_row_numel, in2_value.numel() / in2_rows.size(),
        platform::errors::InvalidArgument(
            "The two inputs width must be equal."
            "But recieved first input width = [%d], second input width = [%d]",
            in1_row_numel, in2_value.numel() / in2_rows.size()));
    PADDLE_ENFORCE_EQ(
        in1_row_numel, out_value->numel() / out_rows.size(),
        platform::errors::InvalidArgument(
            "The input and oupput width must be equal."
            "But recieved input width = [%d], output width = [%d]",
            in1_row_numel, out_value->numel() / out_rows.size()));
66 67

    auto in1_place = input1.place();
68 69 70
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(in1_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the CPU place."));
71
    auto in2_place = input2.place();
72 73 74
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(in2_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the CPU place."));
75
    auto out_place = context.GetPlace();
76 77 78
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(out_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the CPU place."));
79 80 81

    auto* out_data = out_value->data<T>();
    auto* in1_data = in1_value.data<T>();
82
    memory::Copy(out_place, out_data, in1_place, in1_data,
83 84 85
                 in1_value.numel() * sizeof(T));

    auto* in2_data = in2_value.data<T>();
86
    memory::Copy(out_place, out_data + in1_value.numel(), in2_place, in2_data,
87 88 89 90
                 in2_value.numel() * sizeof(T));
  }
};

Q
QI JUN 已提交
91 92
template struct SelectedRowsAdd<platform::CPUDeviceContext, float>;
template struct SelectedRowsAdd<platform::CPUDeviceContext, double>;
93 94

template <typename T>
Q
QI JUN 已提交
95 96
struct SelectedRowsAddTensor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
97
                  const phi::SelectedRows& input1,
98 99 100 101
                  const framework::Tensor& input2, framework::Tensor* output) {
    auto in1_height = input1.height();
    auto in2_dims = input2.dims();
    auto out_dims = output->dims();
102 103 104 105 106 107 108 109 110 111 112 113
    PADDLE_ENFORCE_EQ(
        in1_height, in2_dims[0],
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height = "
                                          "[%d], second input height = [%d]",
                                          in1_height, in2_dims[0]));
    PADDLE_ENFORCE_EQ(
        in1_height, out_dims[0],
        platform::errors::InvalidArgument(
            "The input and output height must be equal."
            "But recieved input height = [%d], output height = [%d]",
            in1_height, out_dims[0]));
114 115 116 117 118

    auto& in1_value = input1.value();
    auto& in1_rows = input1.rows();

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
119 120 121 122 123 124 125 126 127 128 129 130
    PADDLE_ENFORCE_EQ(
        in1_row_numel, input2.numel() / in1_height,
        platform::errors::InvalidArgument(
            "The two inputs width must be equal."
            "But recieved first input width = [%d], second input width = [%d]",
            in1_row_numel, input2.numel() / in1_height));
    PADDLE_ENFORCE_EQ(
        in1_row_numel, output->numel() / in1_height,
        platform::errors::InvalidArgument(
            "The input and output width must be equal."
            "But recieved input width = [%d], output width = [%d]",
            in1_row_numel, output->numel() / in1_height));
131

132
    phi::funcs::SetConstant<platform::CPUDeviceContext, T> functor;
133 134 135 136 137 138 139 140 141 142 143 144 145 146
    functor(context, output, 0.0);

    auto* in1_data = in1_value.data<T>();
    auto* out_data = output->data<T>();

    for (size_t i = 0; i < in1_rows.size(); i++) {
      for (int64_t j = 0; j < in1_row_numel; j++) {
        out_data[in1_rows[i] * in1_row_numel + j] +=
            in1_data[i * in1_row_numel + j];
      }
    }

    auto out_eigen = framework::EigenVector<T>::Flatten(*output);
    auto in2_eigen = framework::EigenVector<T>::Flatten(input2);
Q
QI JUN 已提交
147
    out_eigen.device(*context.eigen_device()) = out_eigen + in2_eigen;
148 149 150
  }
};

Q
QI JUN 已提交
151 152
template struct SelectedRowsAddTensor<platform::CPUDeviceContext, float>;
template struct SelectedRowsAddTensor<platform::CPUDeviceContext, double>;
Q
QI JUN 已提交
153 154

template <typename T>
Q
QI JUN 已提交
155 156
struct SelectedRowsAddTo<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
157 158
                  const phi::SelectedRows& input1, const int64_t input2_offset,
                  phi::SelectedRows* input2) {
Q
QI JUN 已提交
159
    auto in1_height = input1.height();
160 161 162 163 164 165
    PADDLE_ENFORCE_EQ(
        in1_height, input2->height(),
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height = "
                                          "[%d], second input height = [%d]",
                                          in1_height, input2->height()));
Q
QI JUN 已提交
166 167 168 169 170 171 172 173

    auto& in1_rows = input1.rows();
    auto& in2_rows = *(input2->mutable_rows());

    auto& in1_value = input1.value();
    auto* in2_value = input2->mutable_value();

    // concat rows
174 175
    paddle::framework::MixVector<int64_t> mixv_in2_rows(&in2_rows);
    mixv_in2_rows.Extend(in1_rows.begin(), in1_rows.end());
Q
QI JUN 已提交
176 177

    auto in1_place = input1.place();
178 179 180
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(in1_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the CPU place."));
Q
QI JUN 已提交
181
    auto in2_place = input2->place();
182 183 184
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(in2_place), true,
                      platform::errors::InvalidArgument(
                          "The running enviroment is not on the CPU place."));
Q
QI JUN 已提交
185 186 187

    auto* in1_data = in1_value.data<T>();
    auto* in2_data = in2_value->data<T>();
188
    memory::Copy(in2_place, in2_data + input2_offset, in1_place, in1_data,
Q
QI JUN 已提交
189 190 191 192
                 in1_value.numel() * sizeof(T));
  }
};

Q
QI JUN 已提交
193 194 195 196
template struct SelectedRowsAddTo<platform::CPUDeviceContext, float>;
template struct SelectedRowsAddTo<platform::CPUDeviceContext, double>;
template struct SelectedRowsAddTo<platform::CPUDeviceContext, int>;
template struct SelectedRowsAddTo<platform::CPUDeviceContext, int64_t>;
Q
QI JUN 已提交
197

M
minqiyang 已提交
198 199 200
template <typename T>
struct SelectedRowsSumTo<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
201
                  const std::vector<phi::SelectedRows*>& input1,
M
minqiyang 已提交
202
                  const std::vector<int64_t>& input2_offsets,
203
                  phi::SelectedRows* input2) {
M
minqiyang 已提交
204 205 206 207 208 209
    // Ensure all selected rows have the same height
    size_t size = 0u;
    for (auto iter = input1.begin(); iter != input1.end(); ++iter) {
      auto& in_rows = (*iter)->rows();
      size += in_rows.end() - in_rows.begin();
      auto in1_height = (*iter)->height();
210 211 212 213 214 215
      PADDLE_ENFORCE_EQ(in1_height, input2->height(),
                        platform::errors::InvalidArgument(
                            "The two inputs height must be equal."
                            "But recieved first input height = [%d], second "
                            "input height = [%d]",
                            in1_height, input2->height()));
M
minqiyang 已提交
216 217 218 219 220 221 222 223 224 225 226 227
    }
    // concat rows
    std::vector<int64_t> in2_rows;
    in2_rows.reserve(in2_rows.size() + size);
    for (auto iter = input1.begin(); iter != input1.end(); ++iter) {
      const framework::Vector<int64_t>& in_rows = (*iter)->rows();
      in2_rows.insert(in2_rows.end(), in_rows.begin(), in_rows.end());
    }
    input2->set_rows(in2_rows);

    auto* in2_value = input2->mutable_value();
    auto* in2_data = in2_value->data<T>();
228
    auto blas = phi::funcs::GetBlas<platform::CPUDeviceContext, T>(context);
M
minqiyang 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241
    size_t offset = 0u;
    for (size_t i = 0u; i != input1.size(); ++i) {
      auto& in_value = input1[i]->value();
      const auto* in_data = in_value.data<T>();
      offset += input2_offsets[i];
      blas.VCOPY(in_value.numel(), in_data, in2_data + offset);
    }
  }
};

template struct SelectedRowsSumTo<platform::CPUDeviceContext, float>;
template struct SelectedRowsSumTo<platform::CPUDeviceContext, double>;

Q
QI JUN 已提交
242
template <typename T>
Q
QI JUN 已提交
243 244
struct SelectedRowsAddToTensor<platform::CPUDeviceContext, T> {
  void operator()(const platform::CPUDeviceContext& context,
245
                  const phi::SelectedRows& input1, framework::Tensor* input2) {
Q
Qiao Longfei 已提交
246
    if (UNLIKELY(input1.rows().size() == 0)) {
247 248 249
      LOG(WARNING) << "input selected rows is empty!";
      return;
    }
Q
QI JUN 已提交
250 251
    auto in1_height = input1.height();
    auto in2_dims = input2->dims();
252 253 254 255 256 257
    PADDLE_ENFORCE_EQ(
        in1_height, in2_dims[0],
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height = "
                                          "[%d], second input height = [%d]",
                                          in1_height, in2_dims[0]));
Q
QI JUN 已提交
258 259 260 261 262

    auto& in1_value = input1.value();
    auto& in1_rows = input1.rows();

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
263 264 265 266 267 268
    PADDLE_ENFORCE_EQ(
        in1_row_numel, input2->numel() / in1_height,
        platform::errors::InvalidArgument(
            "The two inputs width must be equal."
            "But recieved first input width = [%d], second input width = [%d]",
            in1_row_numel, input2->numel() / in1_height));
Q
QI JUN 已提交
269 270 271 272 273 274 275 276 277 278 279 280 281

    auto* in1_data = in1_value.data<T>();
    auto* input2_data = input2->data<T>();

    for (size_t i = 0; i < in1_rows.size(); i++) {
      for (int64_t j = 0; j < in1_row_numel; j++) {
        input2_data[in1_rows[i] * in1_row_numel + j] +=
            in1_data[i * in1_row_numel + j];
      }
    }
  }
};

Q
QI JUN 已提交
282 283 284 285
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext, float>;
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext, double>;
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext, int>;
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext, int64_t>;
286 287
template struct SelectedRowsAddToTensor<platform::CPUDeviceContext,
                                        platform::bfloat16>;
288

T
typhoonzero 已提交
289 290 291 292 293 294 295 296
// This is a separated namespace for manipulate SelectedRows typed
// data. Like merge duplicated rows, adding two SelectedRows etc.
//
// Another group of functors is called "scatter updates", which means
// use SelectedRows to update a dense tensor with different Ops, like
// add or mul.
namespace scatter {

297
template <typename T, typename DeviceContext>
298
typename std::enable_if<!std::is_integral<T>::value>::type elementwise_add_to(
299 300
    phi::funcs::BlasT<DeviceContext, T>* blas, size_t data_len, const T* in,
    T* out) {
301
  blas->AXPY(data_len, T(1.f), in, out);
Q
Qiao Longfei 已提交
302 303
}

304
template <typename T, typename DeviceContext>
305
typename std::enable_if<std::is_integral<T>::value>::type elementwise_add_to(
306 307
    phi::funcs::BlasT<DeviceContext, T>* blas, size_t data_len, const T* in,
    T* out) {
T
Tao Luo 已提交
308
  for (size_t i = 0; i < data_len; i++) {
Q
Qiao Longfei 已提交
309 310
    out[i] += in[i];
  }
T
typhoonzero 已提交
311 312
}

313
template <typename T, typename DeviceContext>
314
typename std::enable_if<std::is_same<T, platform::bfloat16>::value>::type
315
add_sparse_inputs(const std::vector<const phi::SelectedRows*>& inputs,
316
                  const std::unordered_map<int64_t, size_t>& rows_to_id,
317 318
                  int64_t input_width, const DeviceContext& context,
                  T* out_data) {
319
#ifndef PADDLE_WITH_MKLDNN
320
  auto blas = phi::funcs::GetBlas<DeviceContext, T>(context);
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
#endif
  for (auto* input : inputs) {
    if (input->rows().size() == 0) {
      continue;
    }
    auto* input_data = input->value().data<T>();
    auto& input_rows = input->rows();

#ifdef PADDLE_WITH_MKLDNN
    OneDNNAXPYHandler<T> axpy_handler(input_width, T(1.f));
    for (size_t i = 0; i < input_rows.size(); i++) {
      size_t out_i = rows_to_id.at(input_rows[i]);
      axpy_handler(&input_data[i * input_width],
                   &out_data[out_i * input_width]);
    }
#else
    for (size_t i = 0; i < input_rows.size(); i++) {
      size_t out_i = rows_to_id.at(input_rows[i]);
339 340 341
      elementwise_add_to<T, DeviceContext>(
          &blas, static_cast<size_t>(input_width), &input_data[i * input_width],
          &out_data[out_i * input_width]);
342 343 344 345 346
    }
#endif
  }
}

347
template <typename T, typename DeviceContext>
348
typename std::enable_if<!std::is_same<T, platform::bfloat16>::value>::type
349
add_sparse_inputs(const std::vector<const phi::SelectedRows*>& inputs,
350
                  const std::unordered_map<int64_t, size_t>& rows_to_id,
351 352
                  int64_t input_width, const DeviceContext& context,
                  T* out_data) {
353
  VLOG(4) << "[CPU] add_sparse_inputs <" << typeid(T).name();
354
  auto blas = phi::funcs::GetBlas<DeviceContext, T>(context);
355 356 357 358 359 360 361 362 363
  for (auto* input : inputs) {
    if (input->rows().size() == 0) {
      continue;
    }
    auto* input_data = input->value().data<T>();
    auto& input_rows = input->rows();

    for (size_t i = 0; i < input_rows.size(); i++) {
      size_t out_i = rows_to_id.at(input_rows[i]);
364 365 366
      elementwise_add_to<T, DeviceContext>(
          &blas, static_cast<size_t>(input_width), &input_data[i * input_width],
          &out_data[out_i * input_width]);
367 368 369 370
    }
  }
}

371 372 373
template <typename DeviceContext, typename T>
struct MergeAddImpl {
  phi::SelectedRows operator()(const DeviceContext& context,
374 375 376
                               const phi::SelectedRows& input,
                               const bool sorted_result = false) {
    phi::SelectedRows out;
377
    (*this)(context, input, &out, sorted_result);
S
sneaxiy 已提交
378 379 380
    return out;
  }

381 382
  void operator()(const DeviceContext& context, const phi::SelectedRows& input,
                  phi::SelectedRows* output, const bool sorted_result = false) {
383
    std::vector<const phi::SelectedRows*> inputs;
384
    inputs.push_back(&input);
385
    (*this)(context, inputs, output, sorted_result);
386
  }
T
typhoonzero 已提交
387

388
  void operator()(const DeviceContext& context,
389 390
                  const std::vector<const phi::SelectedRows*>& inputs,
                  phi::SelectedRows* output, const bool sorted_result = false) {
Q
Qiao Longfei 已提交
391
    if (inputs.size() == 0) {
M
minqiyang 已提交
392
      VLOG(3) << "no input! return";
Q
Qiao Longfei 已提交
393 394
      return;
    }
395
    const phi::SelectedRows* has_value_input = nullptr;
Q
Qiao Longfei 已提交
396
    for (auto* in : inputs) {
Q
Qiao Longfei 已提交
397
      if (in->rows().size() > 0) {
Q
Qiao Longfei 已提交
398 399 400 401 402
        has_value_input = in;
        break;
      }
    }
    if (has_value_input == nullptr) {
M
minqiyang 已提交
403
      VLOG(3) << "no input has value! just return" << std::endl;
Q
Qiao Longfei 已提交
404 405 406 407
      return;
    }
    auto input_width = has_value_input->value().dims()[1];
    auto input_height = has_value_input->height();
408
    phi::SelectedRows& out = *output;
409
    std::set<int64_t> merged_row_set;
410
    size_t row_num = 0;
411
    for (auto* input : inputs) {
Q
Qiao Longfei 已提交
412
      if (input->rows().size() == 0) {
Q
Qiao Longfei 已提交
413 414
        continue;
      }
415
      PADDLE_ENFORCE_EQ(input_width, input->value().dims()[1],
416 417 418
                        platform::errors::InvalidArgument(
                            "All inputs should have same "
                            "dimension except for the first one."));
419
      PADDLE_ENFORCE_EQ(input_height, input->height(),
420 421
                        platform::errors::InvalidArgument(
                            "All inputs should have same height."));
422
      row_num += input->rows().size();
423 424
      merged_row_set.insert(input->rows().begin(), input->rows().end());
    }
425

426
    out.set_height(input_height);
T
wip  
typhoonzero 已提交
427
    out.mutable_value()->mutable_data<T>(
428
        phi::make_ddim(
429
            {static_cast<int64_t>(merged_row_set.size()), input_width}),
T
typhoonzero 已提交
430
        context.GetPlace());
431
    auto* out_data = out.mutable_value()->data<T>();
T
typhoonzero 已提交
432

433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
    if (merged_row_set.size() == row_num && !sorted_result) {
      // no duplicated ids, just concat the result together
      std::vector<int64_t> merge_rows;
      merge_rows.reserve(row_num);
      // concat rows
      for (auto* in : inputs) {
        merge_rows.insert(merge_rows.end(), in->rows().begin(),
                          in->rows().end());
      }
      out.set_rows(merge_rows);
      auto in_place = inputs[0]->place();
      auto out_place = out.place();
      int64_t copied_numel = 0;
      for (auto* in : inputs) {
        auto* in_data = in->value().data<T>();
448
        auto in_numel = in->rows().size() * input_width;
449
        memory::Copy(out_place, out_data + copied_numel, in_place, in_data,
450 451 452 453 454 455
                     in_numel * sizeof(T));
        copied_numel += in_numel;
      }
    } else {
      std::vector<int64_t> merge_rows(merged_row_set.begin(),
                                      merged_row_set.end());
T
typhoonzero 已提交
456

457 458 459
      if (sorted_result) {
        std::sort(merge_rows.begin(), merge_rows.end());
      }
T
typhoonzero 已提交
460

461 462
      out.set_rows(merge_rows);

463
      phi::funcs::SetConstant<DeviceContext, T> constant_functor;
464
      constant_functor(context, out.mutable_value(), static_cast<T>(0.f));
465 466 467 468

      std::unordered_map<int64_t, size_t> rows_to_id;
      for (size_t i = 0; i < merge_rows.size(); ++i) {
        rows_to_id[merge_rows[i]] = i;
Q
Qiao Longfei 已提交
469
      }
470

471 472
      add_sparse_inputs<T, DeviceContext>(inputs, rows_to_id, input_width,
                                          context, out_data);
T
typhoonzero 已提交
473
    }
T
wip  
typhoonzero 已提交
474 475 476
  }
};

477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
template <typename T>
struct MergeAdd<platform::CPUDeviceContext, T> {
  // unary functor, merge by adding duplicated rows in
  // the input SelectedRows object.
  phi::SelectedRows operator()(const platform::CPUDeviceContext& context,
                               const phi::SelectedRows& input,
                               const bool sorted_result) {
    return MergeAddImpl<platform::CPUDeviceContext, T>()(context, input,
                                                         sorted_result);
  }

  void operator()(const platform::CPUDeviceContext& context,
                  const phi::SelectedRows& input, phi::SelectedRows* output,
                  const bool sorted_result) {
    MergeAddImpl<platform::CPUDeviceContext, T>()(context, input, output,
                                                  sorted_result);
  }

  void operator()(const platform::CPUDeviceContext& context,
                  const std::vector<const phi::SelectedRows*>& inputs,
                  phi::SelectedRows* output, const bool sorted_result) {
    MergeAddImpl<platform::CPUDeviceContext, T>()(context, inputs, output,
                                                  sorted_result);
  }
};

template <typename T>
struct MergeAdd<phi::CPUContext, T> {
  // unary functor, merge by adding duplicated rows in
  // the input SelectedRows object.
  phi::SelectedRows operator()(const phi::CPUContext& context,
                               const phi::SelectedRows& input,
                               const bool sorted_result) {
    return MergeAddImpl<phi::CPUContext, T>()(context, input, sorted_result);
  }

  void operator()(const phi::CPUContext& context,
                  const phi::SelectedRows& input, phi::SelectedRows* output,
                  const bool sorted_result) {
    MergeAddImpl<phi::CPUContext, T>()(context, input, output, sorted_result);
  }

  void operator()(const phi::CPUContext& context,
                  const std::vector<const phi::SelectedRows*>& inputs,
                  phi::SelectedRows* output, const bool sorted_result) {
    MergeAddImpl<phi::CPUContext, T>()(context, inputs, output, sorted_result);
  }
};

#define TEMPLATE_SPECIALIZED_FOR_MERGEADD_CPU(dtype)               \
  template struct MergeAddImpl<platform::CPUDeviceContext, dtype>; \
  template struct MergeAddImpl<phi::CPUContext, dtype>;            \
  template struct MergeAdd<platform::CPUDeviceContext, dtype>;     \
  template struct MergeAdd<phi::CPUContext, dtype>;

TEMPLATE_SPECIALIZED_FOR_MERGEADD_CPU(float)
TEMPLATE_SPECIALIZED_FOR_MERGEADD_CPU(double)
TEMPLATE_SPECIALIZED_FOR_MERGEADD_CPU(int)
TEMPLATE_SPECIALIZED_FOR_MERGEADD_CPU(int64_t)
TEMPLATE_SPECIALIZED_FOR_MERGEADD_CPU(platform::bfloat16)
TEMPLATE_SPECIALIZED_FOR_MERGEADD_CPU(platform::complex<float>)
TEMPLATE_SPECIALIZED_FOR_MERGEADD_CPU(platform::complex<double>)

540 541 542
#ifdef PADDLE_WITH_XPU
template <typename T>
struct MergeAdd<platform::XPUDeviceContext, T> {
543 544 545 546
  phi::SelectedRows operator()(const platform::XPUDeviceContext& context,
                               const phi::SelectedRows& input,
                               const bool sorted_result = false) {
    phi::SelectedRows out;
547 548 549 550 551
    (*this)(context, input, &out, sorted_result);
    return out;
  }

  void operator()(const platform::XPUDeviceContext& context,
552
                  const phi::SelectedRows& input, phi::SelectedRows* output,
553 554 555 556 557 558
                  const bool sorted_result = false) {
    framework::Vector<int64_t> input_rows(input.rows());
    if (input_rows.size() == 0) {
      return;
    }

559
    phi::SelectedRows& out = *output;
560 561 562 563 564 565 566
    std::set<int64_t> row_set(input_rows.begin(), input_rows.end());
    std::vector<int64_t> merge_rows(row_set.begin(), row_set.end());
    auto input_width = input.value().dims()[1];

    out.set_rows(merge_rows);
    out.set_height(input.height());
    out.mutable_value()->mutable_data<T>(
567
        phi::make_ddim({static_cast<int64_t>(merge_rows.size()), input_width}),
568 569 570 571 572 573 574
        context.GetPlace());

    std::unordered_map<int64_t, size_t> rows_to_id;
    for (size_t i = 0; i < merge_rows.size(); ++i) {
      rows_to_id[merge_rows[i]] = i;
    }

575 576 577 578
    auto* y_data = out.mutable_value()->data<T>();
    auto* x_data = input.value().data<T>();
    int xm = input_rows.size();
    int ym = merge_rows.size();
579
    int n = input_width;
580 581 582 583 584 585 586 587 588 589 590 591

    xpu::ctx_guard RAII_GUARD(context.x_context());
    int64_t* x_rows_data = RAII_GUARD.alloc_l3_or_gm<int64_t>(xm);
    int64_t* y_rows_data = RAII_GUARD.alloc_l3_or_gm<int64_t>(ym);
    memory::Copy(context.GetPlace(), y_rows_data, platform::CPUPlace(),
                 merge_rows.data(), ym * sizeof(int64_t));
    memory::Copy(context.GetPlace(), x_rows_data, platform::CPUPlace(),
                 input_rows.data(), xm * sizeof(int64_t));
    int r =
        xpu::merge_dup_rows<T, int64_t>(context.x_context(), x_data, y_data,
                                        x_rows_data, y_rows_data, xm, n, ym);
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "merge_dup_rows");
592 593 594
  }

  void operator()(const platform::XPUDeviceContext& context,
595 596
                  const std::vector<const phi::SelectedRows*>& inputs,
                  phi::SelectedRows* output, const bool sorted_result = false) {
597 598 599 600
    if (inputs.size() == 0) {
      VLOG(3) << "no input! return";
      return;
    }
601
    const phi::SelectedRows* has_value_input = nullptr;
602 603 604 605 606 607 608 609 610 611 612 613
    for (auto* in : inputs) {
      if (in->rows().size() > 0) {
        has_value_input = in;
        break;
      }
    }
    if (has_value_input == nullptr) {
      VLOG(3) << "no input has value! just return" << std::endl;
      return;
    }
    auto input_width = has_value_input->value().dims()[1];
    auto input_height = has_value_input->height();
614
    phi::SelectedRows& out = *output;
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
    std::set<int64_t> merged_row_set;
    size_t row_num = 0;
    for (auto* input : inputs) {
      if (input->rows().size() == 0) {
        continue;
      }
      PADDLE_ENFORCE_EQ(input_width, input->value().dims()[1],
                        platform::errors::InvalidArgument(
                            "All inputs should have same "
                            "dimension except for the first one."));
      PADDLE_ENFORCE_EQ(input_height, input->height(),
                        platform::errors::InvalidArgument(
                            "All inputs should have same height."));
      row_num += input->rows().size();
      merged_row_set.insert(input->rows().begin(), input->rows().end());
    }

    std::vector<int64_t> merge_rows(merged_row_set.begin(),
                                    merged_row_set.end());

    if (sorted_result) {
      std::sort(merge_rows.begin(), merge_rows.end());
    }

    out.set_rows(merge_rows);
    out.set_height(input_height);
    out.mutable_value()->mutable_data<T>(
642
        phi::make_ddim(
643 644 645
            {static_cast<int64_t>(merged_row_set.size()), input_width}),
        context.GetPlace());

646
    float* y_data = reinterpret_cast<float*>(out.mutable_value()->data<T>());
647 648 649 650 651 652 653 654 655 656 657 658

    std::unordered_map<int64_t, size_t> rows_to_id;
    for (size_t i = 0; i < merge_rows.size(); ++i) {
      rows_to_id[merge_rows[i]] = i;
    }

    for (auto* input : inputs) {
      if (input->rows().size() == 0) {
        continue;
      }
      auto& input_rows = input->rows();

659 660 661
      auto* x_data = input->value().data<T>();
      int xm = input_rows.size();
      int ym = merge_rows.size();
662
      int n = input_width;
663 664 665 666 667 668 669 670 671 672 673 674

      xpu::ctx_guard RAII_GUARD(context.x_context());
      int64_t* x_rows_data = RAII_GUARD.alloc_l3_or_gm<int64_t>(xm);
      int64_t* y_rows_data = RAII_GUARD.alloc_l3_or_gm<int64_t>(ym);
      memory::Copy(context.GetPlace(), y_rows_data, platform::CPUPlace(),
                   merge_rows.data(), ym * sizeof(int64_t));
      memory::Copy(context.GetPlace(), x_rows_data, platform::CPUPlace(),
                   input_rows.data(), xm * sizeof(int64_t));
      int r =
          xpu::merge_dup_rows<T, int64_t>(context.x_context(), x_data, y_data,
                                          x_rows_data, y_rows_data, xm, n, ym);
      PADDLE_ENFORCE_XDNN_SUCCESS(r, "merge_dup_rows");
675 676 677 678 679
    }
  }
};

#endif
680 681
template <typename T>
struct MergeAverage<platform::CPUDeviceContext, T> {
682 683 684
  phi::SelectedRows operator()(const platform::CPUDeviceContext& context,
                               const phi::SelectedRows& input) {
    phi::SelectedRows out;
685 686 687 688 689
    (*this)(context, input, &out);
    return out;
  }

  void operator()(const platform::CPUDeviceContext& context,
690 691
                  const phi::SelectedRows& input, phi::SelectedRows* output) {
    std::vector<const phi::SelectedRows*> inputs;
692 693 694 695 696
    inputs.push_back(&input);
    (*this)(context, inputs, output);
  }

  void operator()(const platform::CPUDeviceContext& context,
697 698
                  const std::vector<const phi::SelectedRows*>& inputs,
                  phi::SelectedRows* output) {
699 700 701 702
    if (inputs.size() == 0) {
      VLOG(3) << "no input! return";
      return;
    }
703
    const phi::SelectedRows* has_value_input = nullptr;
704 705 706 707 708 709 710 711 712 713 714 715
    for (auto* in : inputs) {
      if (in->rows().size() > 0) {
        has_value_input = in;
        break;
      }
    }
    if (has_value_input == nullptr) {
      VLOG(3) << "no input has value! just return" << std::endl;
      return;
    }
    auto input_width = has_value_input->value().dims()[1];
    auto input_height = has_value_input->height();
716
    phi::SelectedRows& out = *output;
717 718 719 720 721 722 723
    std::set<int64_t> merged_row_set;
    size_t row_num = 0;
    for (auto* input : inputs) {
      if (input->rows().size() == 0) {
        continue;
      }
      PADDLE_ENFORCE_EQ(input_width, input->value().dims()[1],
724 725 726
                        platform::errors::InvalidArgument(
                            "All inputs should have same "
                            "dimension except for the first one."));
727
      PADDLE_ENFORCE_EQ(input_height, input->height(),
728 729
                        platform::errors::InvalidArgument(
                            "All input should have same height."));
730 731 732 733 734 735
      row_num += input->rows().size();
      merged_row_set.insert(input->rows().begin(), input->rows().end());
    }

    out.set_height(input_height);
    out.mutable_value()->mutable_data<T>(
736
        phi::make_ddim(
737 738 739 740 741 742 743 744 745 746
            {static_cast<int64_t>(merged_row_set.size()), input_width}),
        context.GetPlace());
    auto* out_data = out.mutable_value()->data<T>();

    std::vector<int64_t> merge_rows(merged_row_set.begin(),
                                    merged_row_set.end());
    std::sort(merge_rows.begin(), merge_rows.end());

    out.set_rows(merge_rows);

747
    phi::funcs::SetConstant<platform::CPUDeviceContext, T> constant_functor;
748 749 750 751 752 753 754
    constant_functor(context, out.mutable_value(), 0.0);

    std::unordered_map<int64_t, size_t> rows_to_id;
    for (size_t i = 0; i < merge_rows.size(); ++i) {
      rows_to_id[merge_rows[i]] = i;
    }

755
    auto blas = phi::funcs::GetBlas<platform::CPUDeviceContext, T>(context);
756 757 758 759 760 761 762 763 764
    for (auto* input : inputs) {
      if (input->rows().size() == 0) {
        continue;
      }
      auto* input_data = input->value().data<T>();
      auto& input_rows = input->rows();

      for (size_t i = 0; i < input_rows.size(); i++) {
        size_t out_i = rows_to_id[input_rows[i]];
765 766 767
        elementwise_add_to<T>(&blas, static_cast<size_t>(input_width),
                              &input_data[i * input_width],
                              &out_data[out_i * input_width]);
768 769 770 771 772 773 774 775 776 777 778 779
      }
    }
    size_t input_width_cast = static_cast<size_t>(input_width);
    T count = static_cast<T>(inputs.size());
    for (size_t i = 0; i < merge_rows.size(); i++) {
      for (size_t j = 0; j < input_width_cast; j++) {
        out_data[i * input_width + j] = out_data[i * input_width + j] / count;
      }
    }
  }
};

780 781 782 783
#ifdef PADDLE_WITH_XPU
template struct MergeAdd<platform::XPUDeviceContext, float>;
#endif

784 785 786 787 788
template struct MergeAverage<platform::CPUDeviceContext, int>;
template struct MergeAverage<platform::CPUDeviceContext, int64_t>;
template struct MergeAverage<platform::CPUDeviceContext, float>;
template struct MergeAverage<platform::CPUDeviceContext, double>;

T
wip  
typhoonzero 已提交
789 790
template <typename T>
struct UpdateToTensor<platform::CPUDeviceContext, T> {
T
typhoonzero 已提交
791
  void operator()(const platform::CPUDeviceContext& context,
792
                  const ScatterOps& op, const phi::SelectedRows& input1,
T
typhoonzero 已提交
793
                  framework::Tensor* input2) {
T
wip  
typhoonzero 已提交
794 795
    auto in1_height = input1.height();
    auto in2_dims = input2->dims();
796 797 798 799 800 801
    PADDLE_ENFORCE_EQ(
        in1_height, in2_dims[0],
        platform::errors::InvalidArgument("The two inputs height must be equal."
                                          "But recieved first input height = "
                                          "[%d], second input height = [%d]",
                                          in1_height, in2_dims[0]));
T
wip  
typhoonzero 已提交
802 803 804 805 806

    auto& in1_value = input1.value();
    auto& in1_rows = input1.rows();

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
807 808 809 810 811 812
    PADDLE_ENFORCE_EQ(
        in1_row_numel, input2->numel() / in1_height,
        platform::errors::InvalidArgument(
            "The two inputs width must be equal."
            "But recieved first input width = [%d], second input width = [%d]",
            in1_row_numel, input2->numel() / in1_height));
T
wip  
typhoonzero 已提交
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856

    auto* in1_data = in1_value.data<T>();
    auto* input2_data = input2->data<T>();

    // FIXME(typhoonzero): use macro fix the below messy code.
    switch (op) {
      case ScatterOps::ASSIGN:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] =
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::ADD:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] +=
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::SUB:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] -=
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::SUBBY:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] =
            in1_data[i * in1_row_numel + j] -
            input2_data[in1_rows[i] * in1_row_numel + j];
        break;
      case ScatterOps::MUL:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] *=
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::DIV:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] /=
            in1_data[i * in1_row_numel + j];
        break;
      case ScatterOps::DIVBY:
        INLINE_FOR2(in1_rows.size(), in1_row_numel)
        input2_data[in1_rows[i] * in1_row_numel + j] =
            in1_data[i * in1_row_numel + j] /
            input2_data[in1_rows[i] * in1_row_numel + j];
        break;
    }
T
typhoonzero 已提交
857 858 859 860
  }
};

}  // namespace scatter
861 862 863
}  // namespace math
}  // namespace operators
}  // namespace paddle