MathFunctions.cpp 7.1 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */


#include "MathFunctions.h"
#include "hl_matrix_ops.cuh"
#include "hl_matrix_apply.cuh"

namespace paddle {

template<>
void gemm<float>(const CBLAS_TRANSPOSE transA, const CBLAS_TRANSPOSE transB,
                 const int M, const int N, const int K,
                 const float alpha, const float* A, const int lda,
                 const float* B, const int ldb,
                 const float beta, float* C, const int ldc) {
  cblas_sgemm(CblasRowMajor, transA, transB, M, N, K, alpha, A, lda, B, ldb,
              beta, C, ldc);
}

template<>
void gemm<double>(const CBLAS_TRANSPOSE transA, const CBLAS_TRANSPOSE transB,
                  const int M, const int N, const int K,
                  const double alpha, const double* A, const int lda,
                  const double* B, const int ldb,
                  const double beta, double* C, const int ldc) {
  cblas_dgemm(CblasRowMajor, transA, transB, M, N, K, alpha, A, lda, B, ldb,
              beta, C, ldc);
}

L
lzhao4ever 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
template<>
int getrf<float>(const CBLAS_ORDER order, const int M, const int N,
                  float *A, const int lda, int *ipiv) {
#ifdef PADDLE_USE_ATLAS
  return clapack_sgetrf(order, M, N, A, lda, ipiv);
#else
  return LAPACKE_sgetrf(order, M, N, A, lda, ipiv);
#endif
}

template<>
int getrf<double>(const CBLAS_ORDER order, const int M, const int N,
                   double *A, const int lda, int *ipiv) {
#ifdef PADDLE_USE_ATLAS
  return clapack_dgetrf(order, M, N, A, lda, ipiv);
#else
  return LAPACKE_dgetrf(order, M, N, A, lda, ipiv);
#endif
}

template<>
int getri<float>(const CBLAS_ORDER order, const int N, float *A,
                  const int lda, const int *ipiv) {
#ifdef PADDLE_USE_ATLAS
  return clapack_sgetri(order, N, A, lda, ipiv);
#else
  return LAPACKE_sgetri(order, N, A, lda, ipiv);
#endif
}

template<>
int getri<double>(const CBLAS_ORDER order, const int N, double *A,
                  const int lda, const int *ipiv) {
#ifdef PADDLE_USE_ATLAS
  return clapack_dgetri(order, N, A, lda, ipiv);
#else
  return LAPACKE_dgetri(order, N, A, lda, ipiv);
#endif
}

Z
zhangjinchao01 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
template<>
void axpy<float>(const int n, const float alpha, const float* x, float* y) {
  cblas_saxpy(n, alpha, x, 1, y, 1);
}

template<>
void axpy<double>(const int n, const double alpha, const double* x, double* y) {
  cblas_daxpy(n, alpha, x, 1, y, 1);
}

template<>
float dotProduct<float>(const int n, const float* x, const float* y) {
  return cblas_sdot(n, x, 1, y, 1);
}

template<>
double dotProduct<double>(const int n, const double* x, const double* y) {
  return cblas_ddot(n, x, 1, y, 1);
}

#ifdef PADDLE_USE_MKL

template<>
void vExp<float>(const int n, const float* a, float* r) {
  vsExp(n, a, r);
}

template<>
void vExp<double>(const int n, const double* a, double* r) {
  vdExp(n, a, r);
}

template<>
void vPow<float>(const int n, const float* a, const float b, float* r) {
  vsPowx(n, a, b, r);
}

template<>
void vPow<double>(const int n, const double* a, const double b, double* r) {
  vdPowx(n, a, b, r);
}

template<>
void vLog<float>(const int n, const float* a, float* r) {
  vsLn(n, a, r);
}

template<>
void vLog<double>(const int n, const double* a, double* r) {
  vdLn(n, a, r);
}

template<>
void vAdd<float>(const int n, const float* a, const float* b, float* r) {
  vsAdd(n, a, b, r);
}

template<>
void vAdd<double>(const int n, const double* a, const double* b, double* r) {
  vdAdd(n, a, b, r);
}

template<>
void vInvSqrt<float>(const int n, const float* a, float* r) {
  vsInvSqrt(n, a, r);
}

template<>
void vInvSqrt<double>(const int n, const double* a, double* r) {
  vdInvSqrt(n, a, r);
}

template<>
void vLog1p<float>(const int n, const float* a, float* r) {
  vsLog1p(n, a, r);
}

template<>
void vLog1p<double>(const int n, const double* a, double* r) {
  vdLog1p(n, a, r);
}

template<>
void vTanh<float>(const int n, const float* a, float* r) {
  vsTanh(n, a, r);
}

template<>
void vTanh<double>(const int n, const double* a, double* r) {
  vdTanh(n, a, r);
}
#else

DEFINE_MATRIX_BINARY_OP(vExp, b = std::exp(a));
template<class T>
void vExp(const int n, const T* a, T* r) {
  hl_cpu_apply_binary_op<T, binary::vExp<T>, 0, 0>(
    binary::vExp<T>(), const_cast<T*>(a), r, 1, n, n, n);
}

DEFINE_MATRIX_BINARY_OP(vLog, b = std::log(a));
template<class T>
void vLog(const int n, const T* a, T* r) {
  hl_cpu_apply_binary_op<T, binary::vLog<T>, 0, 0>(
    binary::vLog<T>(), const_cast<T*>(a), r, 1, n, n, n);
}

DEFINE_MATRIX_BINARY_OP(vInvSqrt, b = 1.0f / std::sqrt(a));
template<class T>
void vInvSqrt(const int n, const T* a, T* r) {
  hl_cpu_apply_binary_op<T, binary::vInvSqrt<T>, 0, 0>(
    binary::vInvSqrt<T>(), const_cast<T*>(a), r, 1, n, n, n);
}

DEFINE_MATRIX_BINARY_OP(vLog1p, b = std::log(1.0f + a));
template<class T>
void vLog1p(const int n, const T* a, T* r) {
  hl_cpu_apply_binary_op<T, binary::vLog1p<T>, 0, 0>(
    binary::vLog1p<T>(), const_cast<T*>(a), r, 1, n, n, n);
}

DEFINE_MATRIX_BINARY_OP(vTanh, b = 2.0 / (1.0 + std::exp(-2 * a)) - 1.0);
template<class T>
void vTanh(const int n, const T* a, T* r) {
  hl_cpu_apply_binary_op<T, binary::vTanh<T>, 0, 0>(
    binary::vTanh<T>(), const_cast<T*>(a), r, 1, n, n, n);
}

DEFINE_MATRIX_BINARY_PARAMETER_OP(vPow, ONE_PARAMETER, b = std::pow(a, p));
template<class T>
void vPow(const int n, const T* a, const T b, T* r) {
  hl_cpu_apply_binary_op<T, binary::vPow<T>, 0, 0>(
    binary::vPow<T>(b), const_cast<T*>(a), r, 1, n, n, n);
}

DEFINE_MATRIX_TERNARY_OP(vAdd, c = a + b);
template<class T>
void vAdd(const int n, const T* a, const T* b, T* r) {
  hl_cpu_apply_ternary_op<T, ternary::vAdd<T>, 0, 0>(ternary::vAdd<T>(),
    const_cast<T*>(a), const_cast<T*>(b), r, 1, n, n, n , n);
}

template void vExp(const int n, const float* a, float* r);
template void vExp(const int n, const double* a, double* r);
template void vLog(const int n, const float* a, float* r);
template void vLog(const int n, const double* a, double* r);
template void vInvSqrt(const int n, const double* a, double* r);
template void vInvSqrt(const int n, const float* a, float* r);
template void vLog1p(const int n, const float* a, float* r);
template void vLog1p(const int n, const double* a, double* r);
template void vTanh(const int n, const float* a, float* r);
template void vTanh(const int n, const double* a, double* r);
template void vPow(const int n, const float* a, const float b, float* r);
template void vPow(const int n, const double* a, const double b, double* r);
template void vAdd(const int n, const float* a, const float* b, float* r);
template void vAdd(const int n, const double* a, const double* b, double* r);

#endif

}  // namespace paddle