gelu_op.cc 5.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <memory>
#include <string>
17

18 19 20 21 22
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/unary.h"
23 24 25 26 27 28

namespace paddle {
namespace operators {

class GeluOp : public framework::OperatorWithKernel {
 public:
29 30
  GeluOp(const std::string &type,
         const framework::VariableNameMap &inputs,
31 32 33 34 35 36 37
         const framework::VariableNameMap &outputs,
         const framework::AttributeMap &attrs)
      : OperatorWithKernel(type, inputs, outputs, attrs) {}

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
38
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
A
Adam 已提交
39
#ifdef PADDLE_WITH_MKLDNN
J
jiahongyu 已提交
40 41 42 43 44
    if (this->CanMKLDNNBeUsed(ctx, data_type)) {
      return framework::OpKernelType(data_type,
                                     ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
A
Adam 已提交
45 46
    }
#endif
J
jiahongyu 已提交
47
    return framework::OpKernelType(data_type, ctx.GetPlace());
48 49 50 51 52 53 54 55 56
  }
};

class GeluGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE_EQ(
57 58
        ctx->HasInput(framework::GradVarName("Out")),
        true,
59 60
        platform::errors::InvalidArgument(
            "Input(%s) of GeluGradOp should not be null.", "DOut"));
61 62
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"),
                      true,
63 64 65
                      platform::errors::InvalidArgument(
                          "Input(%s) of GeluGradOp should not be null.", "X"));
    PADDLE_ENFORCE_EQ(
66 67
        ctx->HasOutput(framework::GradVarName("X")),
        true,
68 69 70 71 72 73 74 75 76 77
        platform::errors::InvalidArgument(
            "Output(%s) of GeluGradOp should not be null.", "DX"));
    auto x_grad_name = framework::GradVarName("X");
    ctx->SetOutputDim(x_grad_name, ctx->GetInputDim("X"));
    ctx->ShareLoD("X", /*->*/ x_grad_name);
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
78
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
A
Adam 已提交
79
#ifdef PADDLE_WITH_MKLDNN
80
    if (this->CanMKLDNNBeUsed(ctx, data_type)) {
J
jiahongyu 已提交
81 82 83 84
      return framework::OpKernelType(data_type,
                                     ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
A
Adam 已提交
85 86
    }
#endif
J
jiahongyu 已提交
87
    return framework::OpKernelType(data_type, ctx.GetPlace());
88 89 90 91 92 93 94 95 96 97 98 99
  }
};

class GeluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of Gelu operator");
    AddOutput("Out", "Output of Gelu operator");
    AddAttr<bool>("approximate",
                  "(bool, default false) use approximation of gelu")
        .SetDefault(false);
    AddComment(R"DOC(
100
Gelu Activation Operator.
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133

For more details, please refer to [Gaussian Error Linear Units](https://arxiv.org/pdf/1606.08415.pdf).

when using approximation
$out = \\frac{1}{2}x(1+tanh(\\sqrt{\\frac{2}{\\pi}}(x+0.044715x^{3}))$

or else
$out = \\frac{1 + erf(\\frac{x}{\\sqrt{2}})}{2} x$

)DOC");
  }
};

template <typename T>
class GeluGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("gelu_grad");
    grad_op->SetInput("X", this->Input("X"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

134 135
DECLARE_INFER_SHAPE_FUNCTOR(gelu,
                            GeluInferShapeFunctor,
136
                            PD_INFER_META(phi::UnchangedInferMeta));
137 138 139
REGISTER_OPERATOR(gelu,
                  ops::GeluOp,
                  ops::GeluOpMaker,
140
                  ops::GeluGradOpMaker<paddle::framework::OpDesc>,
141 142
                  ops::GeluGradOpMaker<paddle::imperative::OpBase>,
                  GeluInferShapeFunctor);
143
REGISTER_OPERATOR(gelu_grad, ops::GeluGradOp);