test_mean_op.py 15.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

L
liaogang 已提交
15
import unittest
16 17

import gradient_checker
L
liaogang 已提交
18
import numpy as np
19
from decorator_helper import prog_scope
A
arlesniak 已提交
20
from op_test import OpTest, OpTestTool
21 22
from test_sum_op import TestReduceOPTensorAxisBase

23
import paddle
24
import paddle.fluid as fluid
25 26
import paddle.fluid.core as core
from paddle.fluid import Program, program_guard
27

28 29
np.random.seed(10)

L
liaogang 已提交
30

31
def mean_wrapper(x, axis=None, keepdim=False, reduce_all=False):
32
    if reduce_all:
33
        return paddle.mean(x, list(range(len(x.shape))), keepdim)
34 35 36 37
    return paddle.mean(x, axis, keepdim)


def reduce_mean_wrapper(x, axis=0, keepdim=False, reduce_all=False):
38
    if reduce_all:
39
        return paddle.mean(x, list(range(len(x.shape))), keepdim)
40 41 42
    return paddle.mean(x, axis, keepdim)


Q
qijun 已提交
43
class TestMeanOp(OpTest):
L
liaogang 已提交
44
    def setUp(self):
Q
qijun 已提交
45
        self.op_type = "mean"
46
        self.python_api = paddle.mean
47
        self.dtype = np.float64
C
chengduo 已提交
48 49
        self.init_dtype_type()
        self.inputs = {'X': np.random.random((10, 10)).astype(self.dtype)}
Q
qijun 已提交
50
        self.outputs = {'Out': np.mean(self.inputs["X"])}
L
liaogang 已提交
51

C
chengduo 已提交
52 53 54
    def init_dtype_type(self):
        pass

Q
qijun 已提交
55
    def test_check_output(self):
56
        self.check_output(check_eager=True)
L
liaogang 已提交
57

Q
qijun 已提交
58
    def test_checkout_grad(self):
59
        self.check_grad(['X'], 'Out', check_eager=True)
60 61


62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
class TestMeanOp_ZeroDim(OpTest):
    def setUp(self):
        self.op_type = "mean"
        self.python_api = paddle.mean
        self.dtype = np.float64
        self.inputs = {'X': np.random.random([]).astype(self.dtype)}
        self.outputs = {'Out': np.mean(self.inputs["X"])}

    def test_check_output(self):
        self.check_output(check_eager=True)

    def test_checkout_grad(self):
        self.check_grad(['X'], 'Out', check_eager=True)


77
class TestMeanOpError(unittest.TestCase):
78 79 80 81
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of mean_op must be Variable.
            input1 = 12
82
            self.assertRaises(TypeError, paddle.mean, input1)
83
            # The input dtype of mean_op must be float16, float32, float64.
G
GGBond8488 已提交
84 85
            input2 = paddle.static.data(
                name='input2', shape=[-1, 12, 10], dtype="int32"
86
            )
87
            self.assertRaises(TypeError, paddle.mean, input2)
G
GGBond8488 已提交
88 89
            input3 = paddle.static.data(
                name='input3', shape=[-1, 4], dtype="float16"
90
            )
91
            paddle.nn.functional.softmax(input3)
92 93


94 95 96
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
C
chengduo 已提交
97 98 99
class TestFP16MeanOp(TestMeanOp):
    def init_dtype_type(self):
        self.dtype = np.float16
S
sneaxiy 已提交
100
        self.__class__.no_need_check_grad = True
C
chengduo 已提交
101 102 103 104

    def test_check_output(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
105
            self.check_output_with_place(place, check_eager=True)
C
chengduo 已提交
106 107 108 109

    def test_checkout_grad(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
S
sneaxiy 已提交
110 111 112 113
            with fluid.dygraph.guard():
                x_np = np.random.random((10, 10)).astype(self.dtype)
                x = paddle.to_tensor(x_np)
                x.stop_gradient = False
114
                y = paddle.mean(x)
S
sneaxiy 已提交
115 116
                dx = paddle.grad(y, x)[0].numpy()
                dx_expected = self.dtype(1.0 / np.prod(x_np.shape)) * np.ones(
117 118
                    x_np.shape
                ).astype(self.dtype)
119
                np.testing.assert_array_equal(dx, dx_expected)
C
chengduo 已提交
120 121


A
arlesniak 已提交
122 123 124 125 126 127 128
@OpTestTool.skip_if_not_cpu_bf16()
class TestBF16MeanOp(TestMeanOp):
    def init_dtype_type(self):
        self.dtype = np.uint16

    def test_check_output(self):
        paddle.enable_static()
129
        self.check_output_with_place(core.CPUPlace(), check_eager=True)
A
arlesniak 已提交
130 131 132

    def test_checkout_grad(self):
        place = core.CPUPlace()
133
        self.check_grad_with_place(place, ['X'], 'Out', check_eager=True)
A
arlesniak 已提交
134 135


136 137 138 139 140 141 142 143
def ref_reduce_mean(x, axis=None, keepdim=False, reduce_all=False):
    if isinstance(axis, list):
        axis = tuple(axis)
    if reduce_all:
        axis = None
    return np.mean(x, axis=axis, keepdims=keepdim)


144
def ref_reduce_mean_grad(x, axis, dtype, reduce_all):
S
sneaxiy 已提交
145 146 147 148 149 150 151
    if reduce_all:
        axis = list(range(x.ndim))

    shape = [x.shape[i] for i in axis]
    return (1.0 / np.prod(shape) * np.ones(shape)).astype(dtype)


152 153 154
class TestReduceMeanOp(OpTest):
    def setUp(self):
        self.op_type = 'reduce_mean'
155
        self.python_api = reduce_mean_wrapper
156 157 158 159 160 161 162 163
        self.dtype = 'float64'
        self.shape = [2, 3, 4, 5]
        self.axis = [0]
        self.keepdim = False
        self.set_attrs()

        np.random.seed(10)
        x_np = np.random.uniform(-1, 1, self.shape).astype(self.dtype)
S
sneaxiy 已提交
164 165 166
        if not hasattr(self, "reduce_all"):
            self.reduce_all = (not self.axis) or len(self.axis) == len(x_np)

167 168 169 170 171 172
        out_np = ref_reduce_mean(x_np, self.axis, self.keepdim, self.reduce_all)
        self.inputs = {'X': x_np}
        self.outputs = {'Out': out_np}
        self.attrs = {
            'dim': self.axis,
            'keep_dim': self.keepdim,
173
            'reduce_all': self.reduce_all,
174 175
        }

S
sneaxiy 已提交
176 177 178
        if self.dtype == 'float16':
            self.__class__.no_need_check_grad = True

179 180 181 182
    def set_attrs(self):
        pass

    def test_check_output(self):
S
sneaxiy 已提交
183
        if self.dtype != 'float16':
184
            self.check_output(check_eager=True)
S
sneaxiy 已提交
185 186 187 188 189
        else:
            if not core.is_compiled_with_cuda():
                return
            place = paddle.CUDAPlace(0)
            self.check_output_with_place(place=place)
190 191

    def test_check_grad(self):
S
sneaxiy 已提交
192
        if self.dtype != 'float16':
193
            self.check_grad(['X'], ['Out'], check_eager=True)
S
sneaxiy 已提交
194 195 196 197 198 199 200 201
        else:
            if not core.is_compiled_with_cuda():
                return
            place = paddle.CUDAPlace(0)
            if core.is_float16_supported(place):
                return
            with fluid.dygraph.guard(place=place):
                x = paddle.tensor(self.inputs['X'])
202 203 204
                y = paddle.mean(
                    x, axis=self.attrs['dim'], keepdim=self.attrs['keep_dim']
                )
S
sneaxiy 已提交
205
                dx = paddle.grad(y, x)[0].numpy()
206
                dx_expected = ref_reduce_mean_grad(
207 208 209 210
                    self.inputs['X'],
                    self.attrs['dim'],
                    self.dtype,
                    self.attrs['reduce_all'],
211
                )
212
                np.testing.assert_array_equal(dx, dx_expected)
213 214 215 216 217


class TestReduceMeanOpDefaultAttrs(TestReduceMeanOp):
    def setUp(self):
        self.op_type = 'reduce_mean'
218
        self.python_api = reduce_mean_wrapper
219 220 221 222 223 224 225 226 227 228 229 230 231 232
        self.dtype = 'float64'
        self.shape = [2, 3, 4, 5]

        x_np = np.random.uniform(-1, 1, self.shape).astype(self.dtype)
        out_np = np.mean(x_np, axis=0)
        self.inputs = {'X': x_np}
        self.outputs = {'Out': out_np}


class TestReduceMeanOpFloat32(TestReduceMeanOp):
    def set_attrs(self):
        self.dtype = 'float32'


S
sneaxiy 已提交
233 234 235 236 237
class TestReduceMeanOpFloat16(TestReduceMeanOp):
    def set_attrs(self):
        self.dtype = 'float16'


238 239 240 241 242
class TestReduceMeanOpShape1D(TestReduceMeanOp):
    def set_attrs(self):
        self.shape = [100]


S
sneaxiy 已提交
243 244 245 246 247 248
class TestReduceMeanOpShape1DFP16(TestReduceMeanOp):
    def set_attrs(self):
        self.shape = [100]
        self.dtype = 'float16'


249 250 251 252 253
class TestReduceMeanOpShape6D(TestReduceMeanOp):
    def set_attrs(self):
        self.shape = [2, 3, 4, 5, 6, 7]


S
sneaxiy 已提交
254 255 256 257 258 259
class TestReduceMeanOpShape6DFP16(TestReduceMeanOp):
    def set_attrs(self):
        self.shape = [2, 3, 4, 5, 6, 7]
        self.dtype = 'float16'


260 261 262 263 264
class TestReduceMeanOpAxisAll(TestReduceMeanOp):
    def set_attrs(self):
        self.axis = [0, 1, 2, 3]


S
sneaxiy 已提交
265 266 267 268 269 270
class TestReduceMeanOpAxisAllFP16(TestReduceMeanOp):
    def set_attrs(self):
        self.axis = [0, 1, 2, 3]
        self.dtype = 'float16'


271 272 273 274 275
class TestReduceMeanOpAxisTuple(TestReduceMeanOp):
    def set_attrs(self):
        self.axis = (0, 1, 2)


S
sneaxiy 已提交
276 277 278 279 280 281
class TestReduceMeanOpAxisTupleFP16(TestReduceMeanOp):
    def set_attrs(self):
        self.axis = (0, 1, 2)
        self.dtype = 'float16'


282 283 284 285 286
class TestReduceMeanOpAxisNegative(TestReduceMeanOp):
    def set_attrs(self):
        self.axis = [-2, -1]


S
sneaxiy 已提交
287 288 289 290 291 292
class TestReduceMeanOpAxisNegativeFP16(TestReduceMeanOp):
    def set_attrs(self):
        self.axis = [-2, -1]
        self.dtype = 'float16'


293 294 295 296 297
class TestReduceMeanOpKeepdimTrue1(TestReduceMeanOp):
    def set_attrs(self):
        self.keepdim = True


S
sneaxiy 已提交
298 299 300 301 302 303
class TestReduceMeanOpKeepdimTrue1FP16(TestReduceMeanOp):
    def set_attrs(self):
        self.keepdim = True
        self.dtype = 'float16'


304 305 306 307 308 309
class TestReduceMeanOpKeepdimTrue2(TestReduceMeanOp):
    def set_attrs(self):
        self.axis = [0, 1, 2, 3]
        self.keepdim = True


S
sneaxiy 已提交
310 311 312 313 314 315 316
class TestReduceMeanOpKeepdimTrue2FP16(TestReduceMeanOp):
    def set_attrs(self):
        self.axis = [0, 1, 2, 3]
        self.keepdim = True
        self.dtype = 'float16'


317 318 319 320 321
class TestReduceMeanOpReduceAllTrue(TestReduceMeanOp):
    def set_attrs(self):
        self.reduce_all = True


S
sneaxiy 已提交
322 323 324 325 326 327
class TestReduceMeanOpReduceAllTrueFP16(TestReduceMeanOp):
    def set_attrs(self):
        self.reduce_all = True
        self.dtype = 'float16'


328
class TestMeanAPI(unittest.TestCase):
329
    # test paddle.tensor.stat.mean
330 331 332 333

    def setUp(self):
        self.x_shape = [2, 3, 4, 5]
        self.x = np.random.uniform(-1, 1, self.x_shape).astype(np.float32)
334 335 336
        self.place = (
            paddle.CUDAPlace(0)
            if core.is_compiled_with_cuda()
337
            else paddle.CPUPlace()
338
        )
339 340

    def test_api_static(self):
Z
Fix  
zhupengyang 已提交
341
        paddle.enable_static()
342
        with paddle.static.program_guard(paddle.static.Program()):
343
            x = paddle.fluid.data('X', self.x_shape)
344 345 346 347 348 349 350 351
            out1 = paddle.mean(x)
            out2 = paddle.tensor.mean(x)
            out3 = paddle.tensor.stat.mean(x)
            axis = np.arange(len(self.x_shape)).tolist()
            out4 = paddle.mean(x, axis)
            out5 = paddle.mean(x, tuple(axis))

            exe = paddle.static.Executor(self.place)
352 353 354
            res = exe.run(
                feed={'X': self.x}, fetch_list=[out1, out2, out3, out4, out5]
            )
355 356
        out_ref = np.mean(self.x)
        for out in res:
357
            np.testing.assert_allclose(out, out_ref, rtol=0.0001)
358

Z
Fix  
zhupengyang 已提交
359 360 361
    def test_api_dygraph(self):
        paddle.disable_static(self.place)

362
        def test_case(x, axis=None, keepdim=False):
Z
Zhou Wei 已提交
363
            x_tensor = paddle.to_tensor(x)
364 365 366 367 368 369
            out = paddle.mean(x_tensor, axis, keepdim)
            if isinstance(axis, list):
                axis = tuple(axis)
                if len(axis) == 0:
                    axis = None
            out_ref = np.mean(x, axis, keepdims=keepdim)
370
            np.testing.assert_allclose(out.numpy(), out_ref, rtol=0.0001)
371 372 373 374 375 376 377 378 379 380 381

        test_case(self.x)
        test_case(self.x, [])
        test_case(self.x, -1)
        test_case(self.x, keepdim=True)
        test_case(self.x, 2, keepdim=True)
        test_case(self.x, [0, 2])
        test_case(self.x, (0, 2))
        test_case(self.x, [0, 1, 2, 3])
        paddle.enable_static()

382 383 384
    def test_fluid_api(self):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            x = fluid.data("x", shape=[10, 10], dtype="float32")
385
            out = paddle.mean(x=x, axis=1)
386 387 388 389
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            x_np = np.random.rand(10, 10).astype(np.float32)
            res = exe.run(feed={"x": x_np}, fetch_list=[out])
390
        np.testing.assert_allclose(res[0], np.mean(x_np, axis=1), rtol=1e-05)
391 392 393 394

        with fluid.dygraph.guard():
            x_np = np.random.rand(10, 10).astype(np.float32)
            x = fluid.dygraph.to_variable(x_np)
395
            out = paddle.mean(x=x, axis=1)
396 397 398
        np.testing.assert_allclose(
            out.numpy(), np.mean(x_np, axis=1), rtol=1e-05
        )
399

400
    def test_errors(self):
401 402 403 404 405
        paddle.disable_static()
        x = np.random.uniform(-1, 1, [10, 12]).astype('float32')
        x = paddle.to_tensor(x)
        self.assertRaises(Exception, paddle.mean, x, -3)
        self.assertRaises(Exception, paddle.mean, x, 2)
Z
Fix  
zhupengyang 已提交
406
        paddle.enable_static()
407
        with paddle.static.program_guard(paddle.static.Program()):
408
            x = paddle.fluid.data('X', [10, 12], 'int32')
409 410 411
            self.assertRaises(TypeError, paddle.mean, x)


412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
class TestMeanWithTensorAxis1(TestReduceOPTensorAxisBase):
    def init_data(self):
        self.pd_api = paddle.mean
        self.np_api = np.mean
        self.x = paddle.randn([10, 5, 9, 9], dtype='float64')
        self.np_axis = np.array([1, 2], dtype='int64')
        self.tensor_axis = paddle.to_tensor([1, 2], dtype='int64')


class TestMeanWithTensorAxis2(TestReduceOPTensorAxisBase):
    def init_data(self):
        self.pd_api = paddle.mean
        self.np_api = np.mean
        self.x = paddle.randn([10, 10, 9, 9], dtype='float64')
        self.np_axis = np.array([0, 1, 2], dtype='int64')
        self.tensor_axis = [
            0,
            paddle.to_tensor([1], 'int64'),
430
            paddle.to_tensor([2], 'int64'),
431 432 433
        ]


434 435 436 437 438 439 440 441 442 443
class TestMeanDoubleGradCheck(unittest.TestCase):
    def mean_wrapper(self, x):
        return paddle.mean(x[0])

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

G
GGBond8488 已提交
444
        data = paddle.static.data('data', [3, 4, 5], dtype)
445 446 447 448
        data.persistable = True
        out = paddle.mean(data)
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

449 450 451 452 453 454
        gradient_checker.double_grad_check(
            [data], out, x_init=[data_arr], place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.mean_wrapper, [data], out, x_init=[data_arr], place=place
        )
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestMeanTripleGradCheck(unittest.TestCase):
    def mean_wrapper(self, x):
        return paddle.mean(x[0])

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

G
GGBond8488 已提交
475
        data = paddle.static.data('data', [3, 4, 5], dtype)
476 477 478 479
        data.persistable = True
        out = paddle.mean(data)
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

480 481 482 483 484 485
        gradient_checker.triple_grad_check(
            [data], out, x_init=[data_arr], place=place, eps=eps
        )
        gradient_checker.triple_grad_check_for_dygraph(
            self.mean_wrapper, [data], out, x_init=[data_arr], place=place
        )
486 487 488 489 490 491 492 493 494 495

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


Q
qijun 已提交
496
if __name__ == "__main__":
497
    paddle.enable_static()
L
liaogang 已提交
498
    unittest.main()