test_cross_op.py 4.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16

17 18
import numpy as np
from op_test import OpTest
19

20 21 22 23 24 25 26 27
import paddle
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard


class TestCrossOp(OpTest):
    def setUp(self):
        self.op_type = "cross"
H
hong 已提交
28
        self.python_api = paddle.cross
29 30 31
        self.initTestCase()
        self.inputs = {
            'X': np.random.random(self.shape).astype(self.dtype),
32
            'Y': np.random.random(self.shape).astype(self.dtype),
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
        }
        self.init_output()

    def initTestCase(self):
        self.attrs = {'dim': -2}
        self.dtype = np.float64
        self.shape = (1024, 3, 1)

    def init_output(self):
        x = np.squeeze(self.inputs['X'], 2)
        y = np.squeeze(self.inputs['Y'], 2)
        z_list = []
        for i in range(1024):
            z_list.append(np.cross(x[i], y[i]))
        self.outputs = {'Out': np.array(z_list).reshape(self.shape)}

    def test_check_output(self):
50
        self.check_output(check_eager=True)
51 52

    def test_check_grad_normal(self):
53
        self.check_grad(['X', 'Y'], 'Out', check_eager=True)
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69


class TestCrossOpCase1(TestCrossOp):
    def initTestCase(self):
        self.shape = (2048, 3)
        self.dtype = np.float32

    def init_output(self):
        z_list = []
        for i in range(2048):
            z_list.append(np.cross(self.inputs['X'][i], self.inputs['Y'][i]))
        self.outputs = {'Out': np.array(z_list).reshape(self.shape)}


class TestCrossAPI(unittest.TestCase):
    def input_data(self):
70 71
        self.data_x = np.array(
            [[1.0, 1.0, 1.0], [2.0, 2.0, 2.0], [3.0, 3.0, 3.0]]
G
GGBond8488 已提交
72
        ).astype('float32')
73 74
        self.data_y = np.array(
            [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]]
G
GGBond8488 已提交
75
        ).astype('float32')
76 77 78 79 80 81

    def test_cross_api(self):
        self.input_data()

        # case 1:
        with program_guard(Program(), Program()):
G
GGBond8488 已提交
82 83
            x = paddle.static.data(name='x', shape=[-1, 3], dtype="float32")
            y = paddle.static.data(name='y', shape=[-1, 3], dtype="float32")
84
            z = paddle.cross(x, y, axis=1)
85
            exe = fluid.Executor(fluid.CPUPlace())
86 87 88 89 90 91 92 93
            (res,) = exe.run(
                feed={'x': self.data_x, 'y': self.data_y},
                fetch_list=[z.name],
                return_numpy=False,
            )
        expect_out = np.array(
            [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]
        )
94
        np.testing.assert_allclose(expect_out, np.array(res), rtol=1e-05)
95 96 97

        # case 2:
        with program_guard(Program(), Program()):
G
GGBond8488 已提交
98 99
            x = paddle.static.data(name='x', shape=[-1, 3], dtype="float32")
            y = paddle.static.data(name='y', shape=[-1, 3], dtype="float32")
100 101
            z = paddle.cross(x, y)
            exe = fluid.Executor(fluid.CPUPlace())
102 103 104 105 106 107 108 109
            (res,) = exe.run(
                feed={'x': self.data_x, 'y': self.data_y},
                fetch_list=[z.name],
                return_numpy=False,
            )
        expect_out = np.array(
            [[-1.0, -1.0, -1.0], [2.0, 2.0, 2.0], [-1.0, -1.0, -1.0]]
        )
110
        np.testing.assert_allclose(expect_out, np.array(res), rtol=1e-05)
111

112 113 114 115 116 117 118 119
        # case 3:
        with program_guard(Program(), Program()):
            x = fluid.data(name="x", shape=[-1, 3], dtype="float32")
            y = fluid.data(name='y', shape=[-1, 3], dtype='float32')

            y_1 = paddle.cross(x, y, name='result')
            self.assertEqual(('result' in y_1.name), True)

120 121 122
    def test_dygraph_api(self):
        self.input_data()
        # case 1:
H
hong 已提交
123 124 125 126 127 128 129
        # with fluid.dygraph.guard():
        #     x = fluid.dygraph.to_variable(self.data_x)
        #     y = fluid.dygraph.to_variable(self.data_y)
        #     z = paddle.cross(x, y)
        #     np_z = z.numpy()
        # expect_out = np.array([[-1.0, -1.0, -1.0], [2.0, 2.0, 2.0],
        #                        [-1.0, -1.0, -1.0]])
130
        # np.testing.assert_allclose(expect_out, np_z, rtol=1e-05)
131 132 133 134 135

        # case 2:
        with fluid.dygraph.guard():
            x = fluid.dygraph.to_variable(self.data_x)
            y = fluid.dygraph.to_variable(self.data_y)
136
            z = paddle.cross(x, y, axis=1)
137
            np_z = z.numpy()
138 139 140
        expect_out = np.array(
            [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]
        )
141
        np.testing.assert_allclose(expect_out, np_z, rtol=1e-05)
142 143 144


if __name__ == '__main__':
H
hong 已提交
145
    paddle.enable_static()
146
    unittest.main()