test_conditional_block.py 3.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
import unittest
16 17 18

import numpy as np

19
import paddle
20
import paddle.fluid as fluid
21
import paddle.fluid.core as core
22
import paddle.fluid.layers as layers
23
from paddle.fluid.backward import append_backward
24
from paddle.fluid.executor import Executor
25
from paddle.fluid.layers.control_flow import ConditionalBlock
Y
Yu Yang 已提交
26 27


28
class ConditionalBlockTest(unittest.TestCase):
Y
Yu Yang 已提交
29
    def test_forward(self):
30 31 32
        main_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):
G
GGBond8488 已提交
33
            data = paddle.static.data(name='X', shape=[-1, 1], dtype='float32')
34 35
            data.stop_gradient = False
            cond = ConditionalBlock(inputs=[data])
36
            out = paddle.tensor.create_tensor(dtype='float32')
37
            with cond.block():
C
Charles-hit 已提交
38
                hidden = paddle.static.nn.fc(x=data, size=10)
39 40 41 42 43 44 45 46 47 48
                layers.assign(hidden, out)

            cpu = core.CPUPlace()
            exe = Executor(cpu)
            exe.run(startup_program)

            x = np.random.random(size=(10, 1)).astype('float32')

            outs = exe.run(main_program, feed={'X': x}, fetch_list=[out])[0]
            print(outs)
49
            loss = paddle.mean(out)
50 51 52 53
            append_backward(loss=loss)
            outs = exe.run(
                main_program,
                feed={'X': x},
54 55
                fetch_list=[main_program.block(0).var(data.name + "@GRAD")],
            )[0]
56 57 58 59 60 61 62 63 64 65 66 67
            print(outs)


class TestConditionalBlockOpInferShape(unittest.TestCase):
    def test_infer_shape(self):
        main_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):
            global_block = main_program.global_block()
            sub_block = main_program._create_block()
            main_program._rollback()
            step_scope = global_block.create_var(
68 69 70 71 72
                type=core.VarDesc.VarType.STEP_SCOPES
            )
            cond_var = layers.fill_constant(
                shape=[1], dtype='bool', value=False
            )
73

74 75 76 77 78 79 80 81 82
            op = global_block.append_op(
                type='conditional_block',
                inputs={
                    'Cond': [cond_var],
                    'Input': [],
                },
                outputs={'Out': [], 'Scope': [step_scope]},
                attrs={'sub_block': sub_block, 'is_scalar_condition': True},
            )
83
            op.desc.infer_shape(global_block.desc)
Y
Yu Yang 已提交
84 85 86 87


if __name__ == '__main__':
    unittest.main()