test_accuracy_op.py 5.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

武毅 已提交
15
import unittest
16

武毅 已提交
17
import numpy as np
18
from op_test import OpTest
19

S
Steffy-zxf 已提交
20
import paddle
21
import paddle.fluid as fluid
22
from paddle.fluid import Program, program_guard
武毅 已提交
23 24 25 26 27


class TestAccuracyOp(OpTest):
    def setUp(self):
        self.op_type = "accuracy"
W
Wu Yi 已提交
28 29
        self.dtype = np.float32
        self.init_dtype()
30
        n = 8192
W
Wu Yi 已提交
31
        infer = np.random.random((n, 1)).astype(self.dtype)
W
wopeizl 已提交
32 33
        indices = np.random.randint(0, 2, (n, 1)).astype('int64')
        label = np.random.randint(0, 2, (n, 1)).astype('int64')
武毅 已提交
34
        self.inputs = {'Out': infer, 'Indices': indices, "Label": label}
武毅 已提交
35
        num_correct = 0
36
        for rowid in range(n):
武毅 已提交
37 38
            for ele in indices[rowid]:
                if ele == label[rowid]:
武毅 已提交
39 40
                    num_correct += 1
                    break
Y
Yang Yang(Tony) 已提交
41
        self.outputs = {
W
Wu Yi 已提交
42
            'Accuracy': np.array([num_correct / float(n)]).astype(self.dtype),
D
Dong Zhihong 已提交
43
            'Correct': np.array([num_correct]).astype("int32"),
44
            'Total': np.array([n]).astype("int32"),
Y
Yang Yang(Tony) 已提交
45
        }
武毅 已提交
46

W
Wu Yi 已提交
47 48 49
    def init_dtype(self):
        pass

武毅 已提交
50 51 52 53
    def test_check_output(self):
        self.check_output()


W
Wu Yi 已提交
54 55 56 57 58 59 60 61
class TestAccuracyOpFp16(TestAccuracyOp):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_output(self):
        self.check_output(atol=1e-3)


62
class TestAccuracyOpError(unittest.TestCase):
63 64 65
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of accuracy_op must be Variable.
66 67 68
            x1 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace()
            )
G
GGBond8488 已提交
69
            label = paddle.static.data(
70 71
                name='label', shape=[-1, 1], dtype="int32"
            )
72
            self.assertRaises(TypeError, paddle.static.accuracy, x1, label)
S
Steffy-zxf 已提交
73
            self.assertRaises(TypeError, paddle.metric.accuracy, x1, label)
74
            # The input dtype of accuracy_op must be float32 or float64.
G
GGBond8488 已提交
75
            x2 = paddle.static.data(name='x2', shape=[-1, 4], dtype="int32")
76
            self.assertRaises(TypeError, paddle.static.accuracy, x2, label)
S
Steffy-zxf 已提交
77
            self.assertRaises(TypeError, paddle.metric.accuracy, x2, label)
G
GGBond8488 已提交
78 79 80
            x3 = paddle.static.data(
                name='input', shape=[-1, 2], dtype="float16"
            )
81
            paddle.static.accuracy(input=x3, label=label)
S
Steffy-zxf 已提交
82 83 84
            paddle.metric.accuracy(input=x3, label=label)


85 86
class TestAccuracyAPI1(unittest.TestCase):
    def setUp(self):
87 88 89 90 91 92 93 94 95
        self.predictions = paddle.static.data(
            shape=[2, 5], name="predictions", dtype="float32"
        )
        self.label = paddle.static.data(
            shape=[2, 1], name="labels", dtype="int64"
        )
        self.result = paddle.static.accuracy(
            input=self.predictions, label=self.label, k=1
        )
96 97
        self.input_predictions = np.array(
            [[0.2, 0.1, 0.4, 0.1, 0.1], [0.2, 0.3, 0.1, 0.15, 0.25]],
98 99
            dtype="float32",
        )
100 101 102 103 104
        self.input_labels = np.array([[2], [0]], dtype="int64")
        self.expect_value = np.array([0.5], dtype='float32')

    def test_api(self):
        exe = paddle.static.Executor()
105 106 107 108 109 110 111
        (result,) = exe.run(
            feed={
                "predictions": self.input_predictions,
                'labels': self.input_labels,
            },
            fetch_list=[self.result.name],
        )
112 113 114 115 116 117 118 119
        self.assertEqual((result == self.expect_value).all(), True)


class TestAccuracyAPI2(unittest.TestCase):
    def test_api(self):
        with fluid.dygraph.guard():
            predictions = paddle.to_tensor(
                [[0.2, 0.1, 0.4, 0.1, 0.1], [0.2, 0.3, 0.1, 0.15, 0.25]],
120 121
                dtype='float32',
            )
122 123 124 125 126 127
            label = paddle.to_tensor([[2], [0]], dtype="int64")
            result = paddle.static.accuracy(input=predictions, label=label, k=1)
            expect_value = np.array([0.5], dtype='float32')
            self.assertEqual((result.numpy() == expect_value).all(), True)


S
Steffy-zxf 已提交
128 129 130 131 132
class TestAccuracyAPI(unittest.TestCase):
    def test_api(self):
        with fluid.dygraph.guard():
            predictions = paddle.to_tensor(
                [[0.2, 0.1, 0.4, 0.1, 0.1], [0.2, 0.3, 0.1, 0.15, 0.25]],
133 134
                dtype='float32',
            )
S
Steffy-zxf 已提交
135 136 137 138 139
            label = paddle.to_tensor([[2], [0]], dtype="int64")
            result = paddle.metric.accuracy(input=predictions, label=label, k=1)
            expect_value = np.array([0.5], dtype='float32')

            self.assertEqual((result.numpy() == expect_value).all(), True)
140 141


武毅 已提交
142 143
if __name__ == '__main__':
    unittest.main()