pipeline_mnist.py 5.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from functools import reduce
16

17
from test_dist_base import TestDistRunnerBase, runtime_main
18 19

import paddle
20
import paddle.distributed.fleet as fleet
21
import paddle.fluid as fluid
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

paddle.enable_static()

DTYPE = "float32"
paddle.dataset.mnist.fetch()

# Fix seed for test
fluid.default_startup_program().random_seed = 1
fluid.default_main_program().random_seed = 1


def cnn_model(data):
    conv_pool_1 = fluid.nets.simple_img_conv_pool(
        input=data,
        filter_size=5,
        num_filters=20,
        pool_size=2,
        pool_stride=2,
        act="relu",
41 42 43 44
        param_attr=fluid.ParamAttr(
            initializer=fluid.initializer.Constant(value=0.01)
        ),
    )
45 46 47 48 49 50 51
    conv_pool_2 = fluid.nets.simple_img_conv_pool(
        input=conv_pool_1,
        filter_size=5,
        num_filters=50,
        pool_size=2,
        pool_stride=2,
        act="relu",
52 53 54 55
        param_attr=fluid.ParamAttr(
            initializer=fluid.initializer.Constant(value=0.01)
        ),
    )
56 57 58 59

    SIZE = 10
    input_shape = conv_pool_2.shape
    param_shape = [reduce(lambda a, b: a * b, input_shape[1:], 1)] + [SIZE]
60
    scale = (2.0 / (param_shape[0] ** 2 * SIZE)) ** 0.5
61

62
    with fluid.device_guard("gpu:1"):
C
Charles-hit 已提交
63 64
        predict = paddle.static.nn.fc(
            x=conv_pool_2,
65
            size=SIZE,
C
Charles-hit 已提交
66 67
            activation="softmax",
            weight_attr=fluid.param_attr.ParamAttr(
68 69 70
                initializer=fluid.initializer.Constant(value=0.01)
            ),
        )
71
        # To cover @RENAMED@GRADIENT
C
Charles-hit 已提交
72 73
        predict2 = paddle.static.nn.fc(
            x=conv_pool_1,
74
            size=SIZE,
C
Charles-hit 已提交
75 76
            activation="softmax",
            weight_attr=fluid.param_attr.ParamAttr(
77 78 79
                initializer=fluid.initializer.Constant(value=0.01)
            ),
        )
80
        predict += predict2
81 82 83 84 85 86 87
    return predict


class TestDistMnist2x2(TestDistRunnerBase):
    def get_model(self, batch_size=2, use_dgc=False, dist_strategy=None):
        # Input data
        with fluid.device_guard("gpu:0"):
G
GGBond8488 已提交
88 89 90 91 92
            images = paddle.static.data(
                name='pixel', shape=[-1, 1, 28, 28], dtype=DTYPE
            )
            label = paddle.static.data(
                name='label', shape=[-1, 1], dtype='int64'
93
            )
94 95 96 97 98 99

            if dist_strategy:
                data_loader = fluid.io.DataLoader.from_generator(
                    feed_list=[images, label],
                    capacity=64,
                    use_double_buffer=False,
100 101
                    iterable=False,
                )
102 103 104
            # Train program
            predict = cnn_model(images)
        with fluid.device_guard("gpu:1"):
105 106 107
            cost = paddle.nn.functional.cross_entropy(
                input=predict, label=label, reduction='none', use_softmax=False
            )
108
            avg_cost = paddle.mean(x=cost)
109 110 111

        # Evaluator
        with fluid.device_guard("gpu:1"):
112
            batch_size_tensor = paddle.tensor.create_tensor(dtype='int64')
113
            batch_acc = paddle.static.accuracy(
114 115
                input=predict, label=label, total=batch_size_tensor
            )
116 117 118 119 120 121 122

        inference_program = fluid.default_main_program().clone()
        base_lr = self.lr
        passes = [30, 60, 80, 90]
        steps_per_pass = 10
        bd = [steps_per_pass * p for p in passes]
        lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]
123 124 125
        lr_val = paddle.optimizer.lr.PiecewiseDecay(boundaries=bd, values=lr)

        opt = paddle.optimizer.AdamW(
126
            learning_rate=lr_val,
127
            grad_clip=paddle.nn.ClipGradByGlobalNorm(clip_norm=1.0),
128
        )
129

130
        acc_steps = 2  # accumulated steps for pipeline
131
        if dist_strategy:
132
            # Reader
133 134 135 136 137 138
            train_reader = paddle.batch(
                paddle.dataset.mnist.test(), batch_size=batch_size
            )
            test_reader = paddle.batch(
                paddle.dataset.mnist.test(), batch_size=batch_size
            )
139 140 141
            fleet.init(is_collective=True)
            strategy = fleet.DistributedStrategy()
            strategy.pipeline = True
142
            strategy.amp = True
143 144 145
            strategy.pipeline_configs = {
                'micro_batch_size': batch_size,
                'schedule_mode': '1F1B',
146
                'accumulate_steps': acc_steps,
147
            }
148 149 150
            dist_opt = fleet.distributed_optimizer(
                optimizer=opt, strategy=strategy
            )
151 152 153
            dist_opt.minimize(avg_cost)
        else:
            opt.minimize(avg_cost)
154
            # Reader
155 156 157 158 159 160
            train_reader = paddle.batch(
                paddle.dataset.mnist.test(), batch_size=batch_size * acc_steps
            )
            test_reader = paddle.batch(
                paddle.dataset.mnist.test(), batch_size=batch_size * acc_steps
            )
161 162

        if dist_strategy:
163 164 165 166 167 168 169 170 171
            return (
                inference_program,
                avg_cost,
                train_reader,
                test_reader,
                batch_acc,
                predict,
                data_loader,
            )
172
        else:
173 174 175 176 177 178 179 180
            return (
                inference_program,
                avg_cost,
                train_reader,
                test_reader,
                batch_acc,
                predict,
            )
181 182 183 184


if __name__ == "__main__":
    runtime_main(TestDistMnist2x2)