parallelizer.py 18.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18 19 20 21
import os
import sys
import json
import shlex
import copy
import pathlib
import subprocess
Z
zhaoyingli 已提交
22
import logging
23 24
import pickle
import time
25
import paddle
Z
zhaoyingli 已提交
26
from paddle.distributed.utils import get_logger
27
from paddle.distributed.fleet import cloud_utils
28
import paddle.fluid.core as core
29
from paddle.fluid import program_guard
J
JZ-LIANG 已提交
30
from paddle.distributed.passes import new_pass, PassContext
31 32
from .dist_context import DistributedContext
from .dist_context import get_default_distributed_context
33
from .dist_context import set_default_distributed_context
34
from .completion import complete_annotation, complete_backward_annotation, complete_update_annotation
35
from .partitioner import Partitioner
36
from .process_group import get_all_process_groups
37
from .process_group import get_process_group
38
from .process_group import get_world_process_groups
39
from .process_group import _g_process_group_map, ProcessGroup
40
from .utils import make_data_unshard
Z
zhaoyingli 已提交
41
from .utils import set_grad_var_shape
42
from .utils import print_program_with_dist_attr
43 44
from .utils import SerialProgramInfo
from .reshard import reshard, HAS_SENT, HAS_RECV, HAS_ALLGATHER
45 46
from .cluster import Cluster
from .mapper import mapping
47 48 49
from .dist_op import DistributedOperator
from .dist_tensor import DistributedTensor
from .planner import Planner
Z
zhaoyingli 已提交
50 51

_logger = get_logger(logging.INFO)
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67


class AutoParallelizer:
    """
    AutoParallelizer is the main controller class to do the auto parallel process.
    And the auto parallel process will be triggered in the wrapped parallelize function.
    To facilitate the auto parallelization, it will contain information about program, cluster and the
    related context. In this basic version, the program information will be retrevied from 
    Fleet object, and the cluster information can be retrevied in the new created Cluster object,
    and the context information can be retrevied in the new created DistributedContext. 
    """

    def __init__(self, fleet):
        self._fleet = fleet
        self._optimizer = self._fleet.user_defined_optimizer
        self._dist_strategy = self._fleet._user_defined_strategy
68
        self._dist_context = DistributedContext()
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
        self._cluster = None
        self._cluster_topo_path = os.getenv("PADDLE_CLUSTER_TOPO_PATH", None)
        if self._cluster_topo_path is not None:
            self._cluster = Cluster()
            self._cluster.build_from_file(self._cluster_topo_path)
        # Prepare information for auto mapping
        self._rank_mapping_path = os.getenv("PADDLE_RANK_MAPPING_PATH", None)
        enable_auto_mapping_env = os.getenv("PADDLE_ENABLE_AUTO_MAPPING", None)
        if enable_auto_mapping_env is None:
            self._enable_auto_mapping = False
        else:
            self._enable_auto_mapping = True
        self._need_rank_mapping = os.getenv("PADDLE_NEED_RANK_MAPPING")
        self._need_rank_mapping = True if self._need_rank_mapping and \
            self._need_rank_mapping.lower() == 'true' else False
84
        self._pass_context = None
85

86 87 88 89 90 91 92 93 94 95
    def _remove_distributed_attrs(self, main_program):
        suffix = core.kAutoParallelSuffix()
        # distributed attributes for variable have been removed
        # in previous process.
        for block in main_program.blocks:
            for op in block.ops:
                for attr_name in op.attr_names:
                    if suffix in attr_name:
                        op._remove_attr(attr_name)

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
    def _apply_serial_forward_pass(self, main_program, startup_program):

        # apply amp forward pass
        if self._dist_strategy.amp:
            auto_parallel_amp_pass = new_pass("auto_parallel_amp_pass",
                                              self._dist_strategy.amp_configs)
            auto_parallel_amp_pass.apply_forward(main_program, startup_program,
                                                 self._pass_context)

        # apply recompute forward pass
        if self._dist_strategy.recompute:
            auto_parallel_recompute_pass = new_pass(
                "auto_parallel_recompute_pass",
                self._dist_strategy.recompute_configs)
            auto_parallel_recompute_pass.apply_forward(
                main_program, startup_program, self._pass_context)

    def _generate_backward(self, main_program, startup_program, loss,
                           parameter_list, no_grad_set, callbacks):

        # apply recompute backward pass
        if self._dist_strategy.recompute:
            assert auto_parallel_recompute_pass
            auto_parallel_recompute_pass.apply_forward(
                main_program, startup_program, parameter_list, no_grad_set,
                self._pass_context)
        else:
            from paddle.fluid.backward import append_backward
            with program_guard(main_program, startup_program):
                params_grads = append_backward(
                    loss,
                    parameter_list,
                    no_grad_set,
                    callbacks,
                    distop_context=self._dist_context.dist_op_context)
            complete_backward_annotation(
                main_program, dist_context=self._dist_context)

        # apply amp forward pass
        if self._dist_strategy.amp:
            assert auto_parallel_amp_pass
            auto_parallel_amp_pass.apply_backward(main_program, startup_program,
                                                  self._pass_context)

        return params_grads

    def _apply_optimize(self, main_program, startup_program, params_grads):

J
JZ-LIANG 已提交
144 145 146
        with program_guard(main_program, startup_program):
            optimize_ops = copy.deepcopy(self._optimizer).apply_gradients(
                params_grads)
147 148 149 150 151 152 153

        # update completion 
        complete_update_annotation(
            main_program, dist_context=self._dist_context)

        return optimize_ops

J
JZ-LIANG 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166
    def _apply_post_optimization_passed(self, main_program, startup_program,
                                        rank, params_grads):

        if self._dist_strategy.sharding:
            config = copy.deepcopy(self._dist_strategy.sharding_configs)
            config["dist_context"] = self._dist_context
            config["params_grads"] = params_grads
            config["global_rank"] = rank
            auto_parallel_sharding_pass = new_pass("auto_parallel_sharding",
                                                   config)
            auto_parallel_sharding_pass.apply(
                [main_program], [startup_program], self._pass_context)

167 168
    def _get_dist_program(self, rank, dist_context=None, relaunch_phase=False):
        completed_main_program = None
169 170 171 172
        serial_main_program = self._main_program.clone()
        serial_startup_program = self._startup_program.clone()
        serial_loss = serial_main_program.global_block().var(self._loss.name)
        # generating serial 
173 174 175 176
        if dist_context is None:
            # Annotation completion
            self._dist_context = DistributedContext()
            _logger.info("Start annotation dist attr.")
177
            completed_main_program = complete_annotation(serial_main_program,
178 179
                                                         self._dist_context)
        else:
180
            completed_main_program = serial_main_program
181 182
            self._dist_context = copy.deepcopy(dist_context)

183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
        # serial forward pass
        self._apply_serial_forward_pass(completed_main_program,
                                        serial_startup_program)
        # serial backward pass
        params_grads = self._generate_backward(
            completed_main_program, serial_startup_program, serial_loss,
            self._parameter_list, self._no_grad_set, self._callbacks)

        # Logical partition 
        rank = paddle.distributed.get_rank()
        partitioner = Partitioner(self._dist_context, rank)
        dist_main_prog, dist_startup_prog, dist_params_grads = partitioner.partition(
            completed_main_program, serial_startup_program, params_grads)

        # TODO refactor the placement of optimizer
        # generate optimize program
        dist_optimize_ops = self._apply_optimize(
            dist_main_prog, dist_startup_prog, dist_params_grads)
201

202
        set_grad_var_shape(dist_main_prog, self._dist_context)
203

204
        make_data_unshard(dist_main_prog, dist_startup_prog, self._dist_context)
205

206
        reshard(dist_main_prog, dist_startup_prog, rank, self._dist_context)
J
JZ-LIANG 已提交
207 208
        self._apply_post_optimization_passed(dist_main_prog, dist_startup_prog,
                                             rank, dist_params_grads)
209 210 211 212 213 214 215 216 217
        g_process_group_map = None
        if not relaunch_phase:
            g_process_group_map = copy.deepcopy(_g_process_group_map)
            HAS_SENT.clear()
            HAS_RECV.clear()
            HAS_ALLGATHER.clear()
            _g_process_group_map.clear()
            _g_process_group_map[0] = ProcessGroup(0, [])
        return dist_optimize_ops, dist_params_grads, dist_startup_prog, dist_main_prog, g_process_group_map
218

219 220
    def parallelize(self,
                    loss,
221
                    startup_program,
222
                    parameter_list=None,
223 224
                    no_grad_set=None,
                    callbacks=None):
225
        assert startup_program is not None
226 227 228 229 230
        self._loss = loss
        self._startup_program = startup_program
        self._main_program = loss.block.program
        self._parameter_list = parameter_list
        self._no_grad_set = no_grad_set
231
        self._callbacks = callbacks
232 233 234 235 236 237 238

        if self._enable_auto_mapping and self._need_rank_mapping:
            # Do the mapping pass before parallelization
            assert self._cluster is not None, \
                "The cluster must not be none when using auto mapping."
            dist_programs = {}
            world_process_group = get_world_process_groups()
239 240 241 242 243 244 245 246 247
            dist_context = None
            # auto search
            if self._dist_strategy.auto_search:
                logging.info("Start searching dist attr.")
                serial_program_info = SerialProgramInfo(
                    self._main_program, self._startup_program, self._loss,
                    self._optimizer, self._cluster)
                planner = Planner(
                    serial_program_info,
248
                    self,
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
                    algorithm_config={"name": "mcmc",
                                      "max_search_times": 5})
                dist_context, _ = planner.search()
                logging.info("End searching dist attr.")

            # serialize the dist context by planner
            if dist_context is not None:
                logging.info("Start serialize searched dist attr")
                cwd = pathlib.Path().resolve()
                searched_dist_context_path = os.path.join(
                    cwd, f"searched_dist_context_{time.time()}.pkl")
                saved_dist_context = {}
                ops_dist_attr = {}
                tensors_dist_attr = {}
                for key, dist_op in dist_context._dist_ops_for_program.items():
                    ops_dist_attr[key] = dist_op.dist_attr
                for key, dist_tensor in dist_context._dist_tensors_for_program.items(
                ):
                    tensors_dist_attr[key] = dist_tensor.dist_attr
                saved_dist_context["ops_dist_attr"] = ops_dist_attr
                saved_dist_context["tensors_dist_attr"] = tensors_dist_attr
                saved_dist_context[
                    "process_meshes"] = dist_context._process_meshes
                with open(searched_dist_context_path,
                          "wb") as dist_context_file:
                    pickle.dump(saved_dist_context, dist_context_file)
                    os.environ[
                        'PADDLE_SEARCHED_DIST_CONTEXT_PATH'] = searched_dist_context_path
                    logging.info(
                        f"End serialize searched dist attr to {searched_dist_context_path}"
                    )

281
            for rank in world_process_group.ranks:
282 283 284
                dist_optimize_ops, dist_params_grads, dist_startup_prog, dist_main_prog, g_process_group_map = self._get_dist_program(
                    rank, dist_context)
                dist_programs[rank] = [dist_main_prog, g_process_group_map]
285 286 287 288

            # Do the mapping between the distributed program graph and the cluster graph
            rank_mapping_dict = mapping(dist_programs, self._cluster)
            rank_mapping = list(rank_mapping_dict.values())
289

290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
            # Relaunch the training by using the rank mapping file
            with open(self._rank_mapping_path, "w") as rank_mapping_file:
                json.dump(rank_mapping, rank_mapping_file)

            enable_elastic = os.getenv("PADDLE_ENABLE_ELASTIC")
            enable_elastic = True if enable_elastic and enable_elastic.lower(
            ) == 'true' else False
            if enable_elastic:
                print("Auto mapping finished, now do elastic re-launch")
                sys.exit(paddle.distributed.fleet.elastic.manager.
                         ELASTIC_AUTO_PARALLEL_EXIT_CODE)

            original_cmd_args = os.getenv("PADDLE_ORIGINAL_CMD_ARGS")
            rank_mapping_args = " ".join(
                ["--rank_mapping_path", self._rank_mapping_path])
            if os.environ.get("WITH_COVERAGE", "OFF") == "ON":
                coverage_args = ["-m", "coverage", "run", "--branch", "-p"]
            else:
                coverage_args = []
            new_cmd_args = "-m paddle.distributed.fleet.launch" + " " + rank_mapping_args + " " + original_cmd_args
            new_cmd = [sys.executable, "-u"] + coverage_args + shlex.split(
                new_cmd_args)
            new_process = subprocess.Popen(new_cmd)
            new_process.wait()
            assert new_process.returncode == 0, \
                "Launch failed with rank mapping"
            print("Successfully do the second launch for auto mapping!")
            sys.exit(0)
        else:
            # Parallelization after the mapping pass
            rank = paddle.distributed.get_rank()
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
            dist_context = None
            searched_dist_context_path = os.getenv(
                "PADDLE_SEARCHED_DIST_CONTEXT_PATH", None)
            if searched_dist_context_path is not None:
                with open(searched_dist_context_path,
                          "rb") as dist_context_file:
                    saved_dist_context = pickle.load(dist_context_file)
                    dist_context = DistributedContext()
                    for op in self._main_program.global_block().ops:
                        dist_attr = saved_dist_context["ops_dist_attr"][
                            op.desc.id()]
                        dist_op = DistributedOperator(op, dist_attr)
                        dist_context.add_dist_op_for_program(dist_op)

                    vars = self._main_program.global_block().vars
                    for var in vars.values():
                        dist_attr = saved_dist_context["tensors_dist_attr"][
                            var.desc.id()]
                        dist_tensor = DistributedTensor(var, dist_attr)
                        dist_context.add_dist_tensor_for_program(dist_tensor)

                    dist_context._process_meshes = saved_dist_context[
                        "process_meshes"]

            else:
                if self._dist_strategy.auto_search:
                    serial_program_info = SerialProgramInfo(
                        self._main_program,
                        self._startup_program,
                        self._loss,
                        self._optimizer,
                        cluster=self._cluster)
                    planner = Planner(
                        serial_program_info,
355
                        self,
356 357 358 359 360 361 362 363 364 365 366 367 368
                        algorithm_config={
                            "name": "mcmc",
                            "max_search_times": 5
                        })
                    dist_context, _ = planner.search()

            # rebuild g_process_group
            if dist_context is not None:
                pg0 = get_process_group(0)
                for process_mesh in dist_context._process_meshes:
                    pg0.add_ranks(process_mesh.processes)
            dist_optimize_ops, dist_params_grads, dist_startup_prog, dist_main_prog, _ = self._get_dist_program(
                rank, dist_context, relaunch_phase=True)
369

370 371 372 373 374 375 376 377 378 379
            # NOTE: This is a trick to fix hang in pipeline mode when dist context is searched by planner
            if self._dist_strategy.auto_search:
                is_pipeline = False
                for op in dist_main_prog.global_block().ops:
                    if op.type == "send_v2" or op.type == "recv_v2":
                        is_pipeline = True
                        break
                if is_pipeline:
                    with paddle.static.program_guard(dist_main_prog):
                        paddle.distributed.barrier()
380

381 382 383 384 385 386 387
            # Traverse different rank programs and traverse each op of them,
            # instantiate communication by process_mapping.
            all_process_groups = get_all_process_groups()
            for process_group in all_process_groups:
                if rank not in process_group.ranks:
                    continue
                process_group.instantiate()
C
caozhou 已提交
388

389 390
            # Copy distributed info to the default context
            set_default_distributed_context(self._dist_context)
Z
zhaoyingli 已提交
391

392 393 394
            # The last step: remove all distributed attributes to be compatible
            # with inference.
            self._remove_distributed_attrs(dist_main_prog)
395

396
            return dist_optimize_ops, dist_params_grads, dist_startup_prog, dist_main_prog
397 398 399 400 401 402 403 404 405 406 407

    def __deepcopy__(self, memo):
        cls = self.__class__
        result = cls.__new__(cls)
        memo[id(self)] = result
        for k, v in self.__dict__.items():
            if k == "_main_program" or k == "_startup_program" or k == "_dist_context" or k == "_fleet" or k == "_loss":
                setattr(result, k, v)
            else:
                setattr(result, k, copy.deepcopy(v, memo))
        return result