batch_norm_grad_kernel.cc 5.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/batch_norm_grad_kernel.h"

#include "paddle/phi/backends/onednn/onednn_reuse.h"
#include "paddle/phi/core/kernel_registry.h"

namespace phi {

template <typename T, typename Context>
void BatchNormGradRawKernel(const Context& dev_ctx,
                            const DenseTensor& x,
                            const DenseTensor& scale,
                            const DenseTensor& bias,
                            const paddle::optional<DenseTensor>& mean,
                            const paddle::optional<DenseTensor>& variance,
                            const DenseTensor& saved_mean,
                            const DenseTensor& saved_variance,
                            const paddle::optional<DenseTensor>& reserve_space,
                            const DenseTensor& y_grad,
                            float momentum,
                            float epsilon,
                            const std::string& data_layout,
                            bool is_test,
                            bool use_global_stats,
                            bool trainable_statistics,
                            bool is_inplace,
                            DenseTensor* x_grad,
                            DenseTensor* scale_grad,
                            DenseTensor* bias_grad) {
  funcs::BatchNormOneDNNHandler<T> handler(
      dev_ctx.GetEngine(), dev_ctx.GetPlace(), epsilon, &x, &scale, &y_grad);

  const unsigned int C = vectorize(scale.dims())[0];
  const size_t scaleshift_size = 2 * C;
  std::vector<T> diff_scaleshift_data;
  diff_scaleshift_data.reserve(scaleshift_size);

  auto src_memory = handler.AcquireSrcMemory(&x);
  auto mean_memory = handler.AcquireMeanMemory(&saved_mean);
  auto variance_memory = handler.AcquireVarianceMemory(&saved_variance);
  auto diff_dst_memory = handler.AcquireDiffDstMemory(&y_grad);
  auto scaleshift_memory = handler.AcquireScaleShiftMemory(&scale, &bias);
  auto diff_src_memory = handler.AcquireDiffSrcMemory(x_grad);
  auto diff_scaleshift_memory =
      handler.AcquireDiffScaleShiftMemory(diff_scaleshift_data.data());

  auto batch_norm_bwd_p = handler.AcquireBackwardPrimitive();

  auto& astream = OneDNNContext::tls().get_stream();
  batch_norm_bwd_p->execute(
      astream,
      {{DNNL_ARG_SRC, *src_memory},
       {DNNL_ARG_MEAN, *mean_memory},
       {DNNL_ARG_VARIANCE, *variance_memory},
       {DNNL_ARG_DIFF_DST, *diff_dst_memory},
       {DNNL_ARG_SCALE_SHIFT, *scaleshift_memory},
       {DNNL_ARG_DIFF_SRC, *diff_src_memory},
       {DNNL_ARG_DIFF_SCALE_SHIFT, *diff_scaleshift_memory}});
  astream.wait();

  T* diff_scale_data = dev_ctx.template Alloc<T>(scale_grad);
  T* diff_shift_data = dev_ctx.template Alloc<T>(bias_grad);

  // copy back diff scale/shift to output tensors (diff scale/shift)
  diff_scaleshift_data.resize(scaleshift_size);
  auto it = std::begin(diff_scaleshift_data);
  std::copy(it, std::next(it, C), diff_scale_data);
  std::copy(std::next(it, C), std::end(diff_scaleshift_data), diff_shift_data);

  // set memory descriptor of out tensor
  x_grad->set_mem_desc(diff_src_memory->get_desc());
}

template <typename T, typename Context>
void BatchNormGradKernel(const Context& dev_ctx,
                         const DenseTensor& x,
                         const DenseTensor& scale,
                         const DenseTensor& bias,
                         const paddle::optional<DenseTensor>& mean,
                         const paddle::optional<DenseTensor>& variance,
                         const DenseTensor& saved_mean,
                         const DenseTensor& saved_variance,
                         const paddle::optional<DenseTensor>& reserve_space,
                         const DenseTensor& y_grad,
                         float momentum,
                         float epsilon,
                         const std::string& data_layout,
                         bool is_test,
                         bool use_global_stats,
                         bool trainable_statistics,
                         DenseTensor* x_grad,
                         DenseTensor* scale_grad,
                         DenseTensor* bias_grad) {
  BatchNormGradRawKernel<T, Context>(dev_ctx,
                                     x,
                                     scale,
                                     bias,
                                     mean,
                                     variance,
                                     saved_mean,
                                     saved_variance,
                                     reserve_space,
                                     y_grad,
                                     momentum,
                                     epsilon,
                                     data_layout,
                                     is_test,
                                     use_global_stats,
                                     trainable_statistics,
                                     /*is_inplace*/ false,
                                     x_grad,
                                     scale_grad,
                                     bias_grad);
}

}  // namespace phi

PD_REGISTER_KERNEL(
    batch_norm_grad, OneDNN, ONEDNN, phi::BatchNormGradKernel, float) {}
PD_REGISTER_KERNEL(
    batch_norm_grad_raw, OneDNN, ONEDNN, phi::BatchNormGradRawKernel, float) {}