executor.cc 4.6 KB
Newer Older
Q
qijun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/framework/executor.h"
Y
Yang Yang 已提交
16

Y
Yang Yang 已提交
17
#include <set>
Y
Yang Yang 已提交
18

Y
Yang Yu 已提交
19
#include "gflags/gflags.h"
Q
QI JUN 已提交
20
#include "paddle/framework/feed_fetch_type.h"
Y
Yu Yang 已提交
21
#include "paddle/framework/lod_rank_table.h"
Y
Yu Yang 已提交
22
#include "paddle/framework/lod_tensor_array.h"
Q
qijun 已提交
23
#include "paddle/framework/op_registry.h"
Y
Yang Yu 已提交
24 25 26 27

DEFINE_bool(check_nan_inf, false,
            "Checking whether operator produce NAN/INF or not. It will be "
            "extremely slow so please use this flag wisely.");
Q
qijun 已提交
28 29 30 31

namespace paddle {
namespace framework {

Y
Yang Yang 已提交
32 33 34
const std::string kFeedOpType = "feed";
const std::string kFetchOpType = "fetch";

D
dzhwinter 已提交
35
Executor::Executor(const platform::Place& place) : place_(place) {}
Q
qijun 已提交
36

37 38
static void CreateTensor(Variable* var, proto::VarDesc::VarType var_type) {
  if (var_type == proto::VarDesc::LOD_TENSOR) {
Q
QI JUN 已提交
39
    var->GetMutable<LoDTensor>();
40
  } else if (var_type == proto::VarDesc::SELECTED_ROWS) {
Q
QI JUN 已提交
41
    var->GetMutable<SelectedRows>();
42
  } else if (var_type == proto::VarDesc::FEED_MINIBATCH) {
Q
QI JUN 已提交
43
    var->GetMutable<FeedFetchList>();
44
  } else if (var_type == proto::VarDesc::FETCH_LIST) {
Q
QI JUN 已提交
45
    var->GetMutable<FeedFetchList>();
46
  } else if (var_type == proto::VarDesc::STEP_SCOPES) {
Y
Yu Yang 已提交
47
    var->GetMutable<std::vector<framework::Scope>>();
48
  } else if (var_type == proto::VarDesc::LOD_RANK_TABLE) {
Y
Yu Yang 已提交
49
    var->GetMutable<LoDRankTable>();
50
  } else if (var_type == proto::VarDesc::LOD_TENSOR_ARRAY) {
Y
Yu Yang 已提交
51
    var->GetMutable<LoDTensorArray>();
Q
QI JUN 已提交
52 53
  } else {
    PADDLE_THROW(
Y
Yu Yang 已提交
54
        "Variable type %d is not in "
Y
Yu Yang 已提交
55
        "[LoDTensor, SelectedRows, FEED_MINIBATCH, FETCH_LIST, LOD_RANK_TABLE]",
Y
Yu Yang 已提交
56
        var_type);
Q
QI JUN 已提交
57 58 59
  }
}

Y
Yang Yu 已提交
60 61
static void CheckTensorNANOrInf(const std::string& name,
                                const framework::Tensor& tensor) {
Y
Refine  
Yang Yu 已提交
62
  if (tensor.memory_size() == 0) {
Y
Yang Yu 已提交
63 64
    return;
  }
Y
Refine  
Yang Yu 已提交
65 66
  if (tensor.type().hash_code() != typeid(float).hash_code() &&
      tensor.type().hash_code() != typeid(double).hash_code()) {
Y
Yang Yu 已提交
67 68 69
    return;
  }
  PADDLE_ENFORCE(!framework::HasInf(tensor), "Tensor %s has Inf", name);
Y
Refine  
Yang Yu 已提交
70 71
  PADDLE_ENFORCE(!framework::HasNAN(tensor), "Tensor %s has NAN, %p", name,
                 &tensor);
Y
Yang Yu 已提交
72 73
}

Y
Yu Yang 已提交
74
void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id,
T
typhoonzero 已提交
75
                   bool create_local_scope, bool create_vars) {
Y
Yang Yang 已提交
76
  // TODO(tonyyang-svail):
Y
Yang Yang 已提交
77
  //    - only runs on the first device (i.e. no interdevice communication)
Y
Yang Yang 已提交
78
  //    - will change to use multiple blocks for RNN op and Cond Op
79
  PADDLE_ENFORCE_LT(static_cast<size_t>(block_id), pdesc.Size());
80
  auto& block = pdesc.Block(block_id);
Y
Yang Yang 已提交
81

Y
Yu Yang 已提交
82
  Scope* local_scope = scope;
T
typhoonzero 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
  if (create_vars) {
    if (create_local_scope) {
      local_scope = &scope->NewScope();
      for (auto& var : block.AllVars()) {
        if (var->Name() == framework::kEmptyVarName) {
          continue;
        }

        if (var->Persistable()) {
          auto* ptr = scope->Var(var->Name());
          CreateTensor(ptr, var->GetType());
          VLOG(3) << "Create Variable " << var->Name()
                  << " global, which pointer is " << ptr;
        } else {
          auto* ptr = local_scope->Var(var->Name());
          CreateTensor(ptr, var->GetType());
          VLOG(3) << "Create Variable " << var->Name()
                  << " locally, which pointer is " << ptr;
        }
102
      }
T
typhoonzero 已提交
103 104
    } else {
      for (auto& var : block.AllVars()) {
Y
Yu Yang 已提交
105 106
        auto* ptr = local_scope->Var(var->Name());
        CreateTensor(ptr, var->GetType());
T
typhoonzero 已提交
107 108
        VLOG(3) << "Create variable " << var->Name() << ", which pointer is "
                << ptr;
Y
Yu Yang 已提交
109
      }
T
typhoonzero 已提交
110 111
    }  // if (create_local_scope)
  }    // if (create_vars)
Y
Yang Yang 已提交
112

113 114
  for (auto& op_desc : block.AllOps()) {
    auto op = paddle::framework::OpRegistry::CreateOp(*op_desc);
115
    VLOG(3) << op->DebugString();
D
dzhwinter 已提交
116
    op->Run(*local_scope, place_);
Y
Yang Yu 已提交
117 118 119 120 121 122 123 124 125
    if (FLAGS_check_nan_inf) {
      for (auto& vname : op->OutputVars(true)) {
        auto* var = local_scope->FindVar(vname);
        if (var == nullptr) continue;
        if (var->IsType<framework::LoDTensor>()) {
          CheckTensorNANOrInf(vname, var->Get<framework::LoDTensor>());
        }
      }
    }
Y
Yu Yang 已提交
126
  }
G
gongweibao 已提交
127
  if (create_vars && create_local_scope) {
Y
Yu Yang 已提交
128
    scope->DeleteScope(local_scope);
Q
qijun 已提交
129
  }
Q
qijun 已提交
130 131 132 133
}

}  // namespace framework
}  // namespace paddle