conv_op.h 14.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

H
hedaoyuan 已提交
17
#include "paddle/framework/eigen.h"
18 19 20
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/im2col.h"
#include "paddle/operators/math/math_function.h"
C
chengduoZH 已提交
21
#include "paddle/operators/math/vol2col.h"
22 23 24 25 26 27

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

武毅 已提交
28 29
// Base convolution operator definations for other conv
// like operators to reuse the implementation.
C
chengduoZH 已提交
30
inline int OutputSize(int input_size, int filter_size, int dilation,
C
chengduoZH 已提交
31 32 33
                      int padding, int stride) {
  const int dkernel = dilation * (filter_size - 1) + 1;
  const int output_size = (input_size + 2 * padding - dkernel) / stride + 1;
武毅 已提交
34 35
  return output_size;
}
C
chengduoZH 已提交
36 37 38
inline bool IsExpand(std::vector<int64_t>& filter_dim,
                     std::vector<int>& strides, std::vector<int>& paddings,
                     std::vector<int>& dilations) {
C
chengduoZH 已提交
39 40
  bool filter_1 = true, strides_1 = true, padding_0 = true, dilation_1 = true;
  for (size_t j = 0; j < strides.size(); ++j) {
C
chengduoZH 已提交
41
    filter_1 = filter_1 && (static_cast<int>(filter_dim[j + 2]) == 1);
C
chengduoZH 已提交
42 43 44
    strides_1 = strides_1 && (strides[j] == 1);
    padding_0 = padding_0 && (paddings[j] == 0);
    dilation_1 = dilation_1 && (dilations[j] == 1);
C
chengduoZH 已提交
45
  }
C
chengduoZH 已提交
46
  return !(filter_1 && strides_1 && padding_0 && dilation_1);
C
chengduoZH 已提交
47
}
武毅 已提交
48 49 50 51 52

// Define Op classes in .h file so that other conv
// operator implementations can reuse the code.
class Conv2DOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
53
  Conv2DOpMaker(OpProto* proto, OpAttrChecker* op_checker);
武毅 已提交
54 55
};

C
chengduoZH 已提交
56 57
class Conv3DOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
58
  Conv3DOpMaker(OpProto* proto, OpAttrChecker* op_checker);
C
chengduoZH 已提交
59 60 61
};

class ConvOp : public framework::OperatorWithKernel {
武毅 已提交
62 63 64
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override;
D
dzhwinter 已提交
65 66 67 68 69 70
  framework::OpKernelType GetExpectedKernelType(
      const framework::OpKernelType& kernel) const override {
    return framework::OpKernelType(kernel.data_type_, platform::CUDAPlace(0),
                                   kernel.data_layout_,
                                   framework::LibraryType::kCUDNN);
  }
武毅 已提交
71 72
};

C
chengduoZH 已提交
73
class ConvOpGrad : public framework::OperatorWithKernel {
武毅 已提交
74 75 76
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override;
D
dzhwinter 已提交
77 78 79 80 81 82 83

  framework::OpKernelType GetExpectedKernelType(
      const framework::OpKernelType& kernel) const override {
    return framework::OpKernelType(kernel.data_type_, platform::CUDAPlace(0),
                                   kernel.data_layout_,
                                   framework::LibraryType::kCUDNN);
  }
武毅 已提交
84 85
};

Q
QI JUN 已提交
86
template <typename DeviceContext, typename T>
C
chengduoZH 已提交
87
class GemmConvKernel : public framework::OpKernel<T> {
88 89 90
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
H
hedaoyuan 已提交
91 92 93 94
    // The filter will be reshaped in the calculations,
    // so here use an assignment operation,
    // that avoids modifying the variable in the Scope.
    Tensor filter = *context.Input<Tensor>("Filter");
95 96 97
    Tensor* output = context.Output<Tensor>("Output");
    output->mutable_data<T>(context.GetPlace());

C
chengduoZH 已提交
98
    int groups = context.Attr<int>("groups");
99 100
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
C
chengduoZH 已提交
101
    std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
102

C
chengduoZH 已提交
103 104
    const int batch_size = static_cast<int>(input->dims()[0]);

C
chengduoZH 已提交
105
    // filter_shape_vec: {k_o, k_i, k_h, k_w} or {k_o, k_i, k_d, k_h, k_w}
C
chengduoZH 已提交
106
    std::vector<int64_t> filter_shape_vec(framework::vectorize(filter.dims()));
C
chengduoZH 已提交
107
    // output_shape_vec: {o_n, o_c, o_h, o_w} or {o_n, o_c, o_d, o_h, o_w}
C
chengduoZH 已提交
108
    std::vector<int64_t> output_shape_vec(framework::vectorize(output->dims()));
109

H
hedaoyuan 已提交
110
    // use col_shape in the im2col calculation
C
chengduoZH 已提交
111 112
    // col_shape_vec: {i_c/g, k_h, k_w, o_h, o_w} or {i_c/g, k_d, k_h, k_w, o_d,
    // o_h, o_w}
C
chengduoZH 已提交
113 114 115 116 117 118 119
    size_t data_dim = filter_shape_vec.size() - 2;
    std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
    col_shape_vec[0] = input->dims()[1] / groups;
    for (size_t j = 0; j < data_dim; ++j) {
      col_shape_vec[j + 1] = filter_shape_vec[j + 2];
      col_shape_vec[j + 1 + data_dim] = output_shape_vec[j + 2];
    }
C
chengduoZH 已提交
120 121
    framework::DDim col_shape(framework::make_ddim(col_shape_vec));

H
hedaoyuan 已提交
122
    // use col_matrix_shape in the gemm calculation
C
chengduoZH 已提交
123 124 125
    // size: (i_c/g * k_h * k_w, o_h * o_w) or (i_c/g * k_d * k_h * k_w, o_d *
    // o_h * o_w)
    framework::DDim col_matrix_shape =
C
chengduoZH 已提交
126
        framework::flatten_to_2d(col_shape, data_dim + 1);
C
chengduoZH 已提交
127

C
chengduoZH 已提交
128
    bool is_expand = IsExpand(filter_shape_vec, strides, paddings, dilations);
H
hedaoyuan 已提交
129
    Tensor col;
H
hedaoyuan 已提交
130 131 132
    // col_matrix shares the same piece of data with col,
    // but will be reshaped into a two-dimensional matrix shape
    // to call the matrix multiplication interface.
C
chengduoZH 已提交
133
    Tensor col_matrix;
C
chengduoZH 已提交
134
    if (is_expand) {
C
chengduoZH 已提交
135 136 137 138
      col.mutable_data<T>(col_shape, context.GetPlace());
      col_matrix.ShareDataWith(col);
      col_matrix.Resize(col_matrix_shape);
    }
139

C
chengduoZH 已提交
140 141 142
    framework::DDim input_shape = framework::slice_ddim(
        input->dims(), 1, static_cast<int>(input->dims().size()));

H
hedaoyuan 已提交
143 144
    framework::DDim filter_matrix_shape = {filter.dims()[0],
                                           filter.numel() / filter.dims()[0]};
H
hedaoyuan 已提交
145 146
    filter.Resize(filter_matrix_shape);

C
chengduoZH 已提交
147 148 149 150 151 152 153 154
    framework::DDim output_matrix_shape = {
        output->dims()[1],
        output->numel() / (output->dims()[0] * output->dims()[1])};

    // convolution operator: im2col(or vol2col) + gemm
    int in_step = static_cast<int>(input->dims()[1]) / groups;
    int out_step = static_cast<int>(output->dims()[1]) / groups;

Q
QI JUN 已提交
155 156
    math::Vol2ColFunctor<DeviceContext, T> vol2col;
    math::Im2ColFunctor<math::ColFormat::kCFO, DeviceContext, T> im2col;
C
chengduoZH 已提交
157

Q
QI JUN 已提交
158
    auto& dev_ctx = context.template device_context<DeviceContext>();
C
chengduoZH 已提交
159 160 161
    for (int i = 0; i < batch_size; i++) {
      Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape);
      Tensor out_batch = output->Slice(i, i + 1).Resize(output_matrix_shape);
C
chengduoZH 已提交
162

C
chengduoZH 已提交
163 164
      for (int g = 0; g < groups; g++) {
        Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step);
H
hedaoyuan 已提交
165

C
chengduoZH 已提交
166
        if (!is_expand) {
C
chengduoZH 已提交
167 168 169
          col.ShareDataWith(in_slice);
          col_matrix.ShareDataWith(col);
          col_matrix.Resize(col_matrix_shape);
C
chengduoZH 已提交
170
        } else if (data_dim == 2U) {
C
chengduoZH 已提交
171
          // im2col
Q
QI JUN 已提交
172
          im2col(dev_ctx, in_slice, dilations, strides,
C
chengduoZH 已提交
173 174 175
                 std::vector<int>{paddings[0], paddings[1], paddings[0],
                                  paddings[1]},
                 &col);
C
chengduoZH 已提交
176
        } else if (data_dim == 3U) {
C
chengduoZH 已提交
177
          // vol2col
Q
QI JUN 已提交
178
          vol2col(dev_ctx, in_slice, dilations, strides, paddings, &col);
C
chengduoZH 已提交
179
        }
C
chengduoZH 已提交
180 181 182 183

        // gemm
        Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step);
        Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step);
Q
QI JUN 已提交
184 185
        math::matmul<DeviceContext, T>(dev_ctx, filter_slice, false, col_matrix,
                                       false, T(1.0), &out_slice, T(0.0));
H
hedaoyuan 已提交
186
      }
187 188 189 190
    }
  }
};

Q
QI JUN 已提交
191
template <typename DeviceContext, typename T>
C
chengduoZH 已提交
192
class GemmConvGradKernel : public framework::OpKernel<T> {
193 194
 public:
  void Compute(const framework::ExecutionContext& context) const override {
H
hedaoyuan 已提交
195 196 197 198 199
    const Tensor* input = context.Input<Tensor>("Input");
    const Tensor* output_grad =
        context.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad =
        context.Output<Tensor>(framework::GradVarName("Input"));
H
hedaoyuan 已提交
200
    Tensor* filter_grad =
H
hedaoyuan 已提交
201
        context.Output<Tensor>(framework::GradVarName("Filter"));
H
hedaoyuan 已提交
202 203 204 205
    // The filter and filter_grad will be reshaped in the calculations,
    // so here use an assignment operation,
    // that avoids modifying the variable in the Scope.
    Tensor filter = *context.Input<Tensor>("Filter");
H
hedaoyuan 已提交
206

C
chengduoZH 已提交
207 208
    if (!input_grad && !filter_grad) return;

C
chengduoZH 已提交
209
    int groups = context.Attr<int>("groups");
H
hedaoyuan 已提交
210 211
    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
C
chengduoZH 已提交
212
    std::vector<int> dilations = context.Attr<std::vector<int>>("dilations");
H
hedaoyuan 已提交
213

C
chengduoZH 已提交
214
    const int batch_size = static_cast<int>(input->dims()[0]);
H
hedaoyuan 已提交
215

C
chengduoZH 已提交
216
    // filter_shape_vec: {k_o, k_i, k_h, k_w} or {k_o, k_i, k_d, k_h, k_w}
C
chengduoZH 已提交
217
    std::vector<int64_t> filter_shape_vec(framework::vectorize(filter.dims()));
C
chengduoZH 已提交
218
    // output_shape_vec: {o_n, o_c, o_h, o_w} or {o_n, o_c, o_d, o_h, o_w}
C
chengduoZH 已提交
219 220
    std::vector<int64_t> output_shape_vec(
        framework::vectorize(output_grad->dims()));
C
chengduoZH 已提交
221

C
chengduoZH 已提交
222 223 224
    // use col_shape in the im2col calculation
    // col_shape_vec: {i_c/g, k_h, k_w, o_h, o_w} or {i_c/g, k_d, k_h, k_w, o_d,
    // o_h, o_w}
C
chengduoZH 已提交
225 226 227 228 229 230 231
    size_t data_dim = filter_shape_vec.size() - 2;
    std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
    col_shape_vec[0] = input->dims()[1] / groups;
    for (size_t j = 0; j < data_dim; ++j) {
      col_shape_vec[j + 1] = filter_shape_vec[j + 2];
      col_shape_vec[j + 1 + data_dim] = output_shape_vec[j + 2];
    }
C
chengduoZH 已提交
232
    framework::DDim col_shape(framework::make_ddim(col_shape_vec));
C
chengduoZH 已提交
233 234

    // use col_matrix_shape in the gemm calculation
C
chengduoZH 已提交
235 236 237 238
    // size: (i_c/g * k_h * k_w, o_h * o_w)
    // or
    // (i_c/g * k_d * k_h * k_w, o_d * o_h * o_w)
    framework::DDim col_matrix_shape =
C
chengduoZH 已提交
239
        framework::flatten_to_2d(col_shape, data_dim + 1);
C
chengduoZH 已提交
240 241 242

    framework::DDim input_shape = framework::slice_ddim(
        input->dims(), 1, static_cast<int>(input->dims().size()));
C
chengduoZH 已提交
243

C
chengduoZH 已提交
244 245
    framework::DDim filter_matrix_shape = {filter.dims()[0],
                                           filter.numel() / filter.dims()[0]};
C
chengduoZH 已提交
246 247 248
    filter.Resize(filter_matrix_shape);

    framework::DDim output_matrix_shape = {
C
chengduoZH 已提交
249 250 251
        output_grad->dims()[1],
        output_grad->numel() /
            (output_grad->dims()[0] * output_grad->dims()[1])};
C
chengduoZH 已提交
252

C
chengduoZH 已提交
253 254 255 256
    // convolution backward input operator:  gemm + col2im(or col2vol)
    // convolution backward weight operator: im2col(or vol2col) + gemm
    int in_step = static_cast<int>(input->dims()[1]) / groups;
    int out_step = static_cast<int>(output_grad->dims()[1]) / groups;
C
chengduoZH 已提交
257

C
chengduoZH 已提交
258
    bool is_expand = IsExpand(filter_shape_vec, strides, paddings, dilations);
C
chengduoZH 已提交
259 260 261 262
    Tensor col;
    // col_matrix shares the same piece of data with col,
    // but will be reshaped into a two-dimensional matrix shape
    // to call the matrix multiplication interface.
C
chengduoZH 已提交
263
    Tensor col_matrix;
C
chengduoZH 已提交
264
    if (is_expand) {
C
chengduoZH 已提交
265 266 267 268
      col.mutable_data<T>(col_shape, context.GetPlace());
      col_matrix.ShareDataWith(col);
      col_matrix.Resize(col_matrix_shape);
    }
C
chengduoZH 已提交
269

Q
QI JUN 已提交
270 271
    math::SetConstant<DeviceContext, T> set_zero;
    auto& dev_ctx = context.template device_context<DeviceContext>();
C
chengduoZH 已提交
272 273 274 275

    if (input_grad) {
      input_grad->mutable_data<T>(context.GetPlace());

C
chengduoZH 已提交
276 277 278
      // if is_expand is false, the operation of set_zero is unnecessary,
      // because math::matmul will reset input_grad.
      if (is_expand) {
C
chengduoZH 已提交
279
        set_zero(dev_ctx, input_grad, static_cast<T>(0));
C
chengduoZH 已提交
280
      }
Q
QI JUN 已提交
281 282
      math::Col2VolFunctor<DeviceContext, T> col2vol;
      math::Col2ImFunctor<math::ColFormat::kCFO, DeviceContext, T> col2im;
C
chengduoZH 已提交
283

C
chengduoZH 已提交
284 285 286 287 288 289 290 291 292 293 294 295 296 297
      for (int i = 0; i < batch_size; i++) {
        Tensor out_grad_batch =
            output_grad->Slice(i, i + 1).Resize(output_matrix_shape);
        Tensor in_grad_batch = input_grad->Slice(i, i + 1).Resize(input_shape);
        for (int g = 0; g < groups; g++) {
          // gemm
          Tensor out_grad_slice =
              out_grad_batch.Slice(g * out_step, (g + 1) * out_step);
          Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step);

          Tensor in_grad_slice =
              in_grad_batch.Slice(g * in_step, (g + 1) * in_step);

          if (!is_expand) {
C
chengduoZH 已提交
298 299
            col_matrix.ShareDataWith(in_grad_slice);
            col_matrix.Resize(col_matrix_shape);
C
chengduoZH 已提交
300
          }
Q
QI JUN 已提交
301 302 303
          math::matmul<DeviceContext, T>(dev_ctx, filter_slice, true,
                                         out_grad_slice, false, T(1.0),
                                         &col_matrix, T(0.0));
C
chengduoZH 已提交
304

C
chengduoZH 已提交
305
          if (is_expand && data_dim == 2U) {
Q
QI JUN 已提交
306
            col2im(dev_ctx, col, dilations, strides,
C
chengduoZH 已提交
307 308 309
                   std::vector<int>{paddings[0], paddings[1], paddings[0],
                                    paddings[1]},
                   &in_grad_slice);
C
chengduoZH 已提交
310
          } else if (is_expand && data_dim == 3U) {
Q
QI JUN 已提交
311
            col2vol(dev_ctx, col, dilations, strides, paddings, &in_grad_slice);
C
chengduoZH 已提交
312
          }
C
chengduoZH 已提交
313 314 315 316 317 318 319 320
        }
      }
    }

    if (filter_grad) {
      filter_grad->mutable_data<T>(context.GetPlace());
      Tensor filter_grad_ = *filter_grad;
      filter_grad_.Resize(filter_matrix_shape);
Q
QI JUN 已提交
321 322 323
      set_zero(dev_ctx, filter_grad, static_cast<T>(0));
      math::Im2ColFunctor<math::ColFormat::kCFO, DeviceContext, T> im2col;
      math::Vol2ColFunctor<DeviceContext, T> vol2col;
C
chengduoZH 已提交
324 325 326 327 328 329 330 331 332
      for (int i = 0; i < batch_size; i++) {
        Tensor out_grad_batch =
            output_grad->Slice(i, i + 1).Resize(output_matrix_shape);
        Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape);
        for (int g = 0; g < groups; g++) {
          // im2col
          Tensor out_grad_slice =
              out_grad_batch.Slice(g * out_step, (g + 1) * out_step);
          Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step);
C
chengduoZH 已提交
333

C
chengduoZH 已提交
334
          if (!is_expand) {
C
chengduoZH 已提交
335 336 337
            col.ShareDataWith(in_slice);
            col_matrix.ShareDataWith(col);
            col_matrix.Resize(col_matrix_shape);
C
chengduoZH 已提交
338
          } else if (data_dim == 2U) {
Q
QI JUN 已提交
339
            im2col(dev_ctx, in_slice, dilations, strides,
C
chengduoZH 已提交
340 341 342
                   std::vector<int>{paddings[0], paddings[1], paddings[0],
                                    paddings[1]},
                   &col);
C
chengduoZH 已提交
343
          } else if (data_dim == 3U) {
Q
QI JUN 已提交
344
            vol2col(dev_ctx, in_slice, dilations, strides, paddings, &col);
C
chengduoZH 已提交
345
          }
C
chengduoZH 已提交
346 347 348 349

          // gemm
          Tensor filter_grad_slice =
              filter_grad_.Slice(g * out_step, (g + 1) * out_step);
Q
QI JUN 已提交
350 351 352
          math::matmul<DeviceContext, T>(dev_ctx, out_grad_slice, false,
                                         col_matrix, true, T(1.0),
                                         &filter_grad_slice, T(1.0));
C
chengduoZH 已提交
353 354 355 356 357
        }
      }
    }
  }
};
358 359
}  // namespace operators
}  // namespace paddle