test_nce.py 9.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

W
wanghaoshuang 已提交
17
import numpy as np
18 19 20 21
import unittest

import paddle.fluid as fluid
import paddle.fluid.initializer as initializer
22
from paddle.fluid import Program, program_guard
23

24
from op_test import OpTest
W
wanghaoshuang 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41


def nce(input, weight, bias, sample_weight, labels, num_classes,
        num_sample_class):
    samples = []
    sample_labels = []
    batch_size = input.shape[0]
    num_true_class = labels.shape[1]
    for i in range(batch_size):
        w = 1 if sample_weight is None else sample_weight[i]
        for label in labels[i]:
            samples.append((i, label, True, w))
            sample_labels.append(label)
        for num in range(num_sample_class):
            samples.append((i, num, False, w))
            sample_labels.append(num)
    # forward bias
W
wanghaoshuang 已提交
42
    sample_out = np.zeros(len(samples)).astype(np.float32)
W
wanghaoshuang 已提交
43 44
    if bias is not None:
        for i in range(len(samples)):
W
wanghaoshuang 已提交
45
            sample_out[i] = bias[samples[i][1]]
W
wanghaoshuang 已提交
46 47
    # forward weight
    for i in range(len(samples)):
W
wanghaoshuang 已提交
48
        sample_out[i] += np.dot(input[samples[i][0]], weight[samples[i][1]])
W
wanghaoshuang 已提交
49 50

    # forward activation
W
wanghaoshuang 已提交
51
    sample_out = 1.0 / (1.0 + np.exp(-sample_out))
W
wanghaoshuang 已提交
52 53 54 55
    # forward cost
    out = np.zeros(batch_size).astype(np.float32)
    b = 1.0 / num_classes * num_sample_class
    for i in range(len(samples)):
W
wanghaoshuang 已提交
56
        o = sample_out[i]
W
wanghaoshuang 已提交
57 58
        cost = -np.log(o / (o + b)) if samples[i][2] else -np.log(b / (o + b))
        out[samples[i][0]] += cost * samples[i][3]
W
wanghaoshuang 已提交
59
    return (out[:, np.newaxis], np.array(sample_out).reshape(
W
wanghaoshuang 已提交
60
        batch_size, num_sample_class + num_true_class),
W
wanghaoshuang 已提交
61 62 63 64 65 66
            np.array(sample_labels).reshape(batch_size,
                                            num_sample_class + num_true_class))


class TestNCE(OpTest):
    def generate_data(self, dim, batch_size, num_classes, num_true_class,
67
                      num_neg_samples, is_sparse):
W
wanghaoshuang 已提交
68 69 70 71
        input = np.random.randn(batch_size, dim).astype(np.float32)
        weight = np.random.randn(num_classes, dim).astype(np.float32)
        bias = np.random.randn(num_classes).astype(np.float32)
        sample_weight = np.random.randn(batch_size).astype(np.float32)
P
peizhilin 已提交
72 73
        labels = np.random.randint(0, num_classes,
                                   (batch_size, num_true_class)).astype("int64")
W
wanghaoshuang 已提交
74
        self.attrs = {
W
wanghaoshuang 已提交
75 76
            'num_total_classes': num_classes,
            'num_neg_samples': num_neg_samples,
77 78
            'custom_neg_classes': list(range(num_neg_samples)),
            'seed': 0,
79 80
            'sampler': 0,
            'is_sparse': is_sparse
W
wanghaoshuang 已提交
81 82
        }
        self.inputs = {
W
wanghaoshuang 已提交
83
            'Input': input,
W
wanghaoshuang 已提交
84
            'Label': labels,
W
wanghaoshuang 已提交
85 86
            'Weight': weight,
            'Bias': bias,
W
wanghaoshuang 已提交
87 88 89 90
            'SampleWeight': sample_weight
        }

    def set_data(self):
91
        self.generate_data(5, 5, 4, 1, 2, False)
W
wanghaoshuang 已提交
92 93

    def compute(self):
W
wanghaoshuang 已提交
94 95
        out = nce(self.inputs['Input'], self.inputs['Weight'],
                  self.inputs['Bias'], self.inputs['SampleWeight'],
W
wanghaoshuang 已提交
96 97
                  self.inputs['Label'], self.attrs['num_total_classes'],
                  self.attrs['num_neg_samples'])
W
wanghaoshuang 已提交
98
        self.outputs = {
W
wanghaoshuang 已提交
99
            'Cost': out[0],
W
wanghaoshuang 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112
            'SampleLogits': out[1],
            'SampleLabels': out[2]
        }

    def setUp(self):
        self.op_type = 'nce'
        self.set_data()
        self.compute()

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
W
wanghaoshuang 已提交
113 114
        self.check_grad(
            ["Input", "Weight", "Bias"], "Cost", max_relative_error=0.02)
W
wanghaoshuang 已提交
115 116


117
class TestNCECase1Tensor(TestNCE):
W
wanghaoshuang 已提交
118
    def set_data(self):
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
        self.generate_data(10, 20, 10, 2, 5, False)


class TestNCECase1SelectedRows(unittest.TestCase):
    def setUp(self):
        self.base_lr = 0.0001
        self.batch_size = 8

    @staticmethod
    def get_place():
        place = fluid.core.CPUPlace()
        return place

    @staticmethod
    def get_train_data(batch_size):
        batchs = []
        for i in range(batch_size):
            input = np.random.randn(batch_size, 10).astype(np.float32)
            labels = np.random.randint(0, 20, (batch_size, 1))
            batchs.append([input, labels])
        return batchs

    def get_optimizer(self):
        # SGD optimizer
        optimizer = fluid.optimizer.SGD(learning_rate=self.base_lr)
        return optimizer

    def train_network(self, num_total_classes, num_neg_samples, sampler,
                      custom_dist, is_sparse):
        input = fluid.layers.data(name="input", shape=[10], dtype="float32")
        label = fluid.layers.data(name="label", shape=[1], dtype="int64")

        w_param = fluid.default_main_program().global_block().create_parameter(
            shape=[num_total_classes, 10],
            dtype='float32',
            name='nce_w',
            initializer=initializer.ConstantInitializer())
        b_param = fluid.default_main_program().global_block().create_parameter(
            shape=[num_total_classes, 1],
            dtype='float32',
            name='nce_b',
            initializer=initializer.ConstantInitializer())

        cost = fluid.layers.nce(input=input,
                                label=label,
                                num_total_classes=num_total_classes,
                                sampler=sampler,
                                custom_dist=custom_dist,
                                sample_weight=None,
                                param_attr='nce_w',
                                bias_attr='nce_b',
                                seed=1,
                                num_neg_samples=num_neg_samples,
                                is_sparse=is_sparse)
        avg_cost = fluid.layers.mean(cost)
        # optimizer
        optimizer = self.get_optimizer()
        optimizer.minimize(avg_cost)

        return [avg_cost, [input, label]]

    def test_input_is_selected_rows(self):
        place = self.get_place()
        exe = fluid.Executor(place)

        data = self.get_train_data(self.batch_size)
        nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')

        rets = []
        # for dense
        dense_scope = fluid.core.Scope()
        dense_startup_program = fluid.framework.Program()
        dense_train_program = fluid.framework.Program()
        with fluid.scope_guard(dense_scope):
            with fluid.program_guard(dense_train_program,
                                     dense_startup_program):
                cost, feeds = self.train_network(20, 5, "custom_dist",
                                                 nid_freq_arr.tolist(), False)
                feeder = fluid.DataFeeder(feed_list=feeds, place=place)
                exe.run(dense_startup_program)
                loss_val = exe.run(dense_train_program,
                                   feed=feeder.feed(data),
                                   fetch_list=[cost.name])
                rets.append(np.mean(loss_val))

        # for sparse
        sparse_scope = fluid.core.Scope()
        sparse_startup_program = fluid.framework.Program()
        sparse_train_program = fluid.framework.Program()
        with fluid.scope_guard(sparse_scope):
            with fluid.program_guard(sparse_train_program,
                                     sparse_startup_program):
                cost, feeds = self.train_network(20, 5, "custom_dist",
                                                 nid_freq_arr.tolist(), True)
                feeder = fluid.DataFeeder(feed_list=feeds, place=place)
                exe.run(sparse_startup_program)
                loss_val = exe.run(sparse_train_program,
                                   feed=feeder.feed(data),
                                   fetch_list=[cost.name])
                rets.append(np.mean(loss_val))

        self.assertEqual(rets[0], rets[1])
W
wanghaoshuang 已提交
221 222


223
class TestNCE_OpError(unittest.TestCase):
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
    def test_errors(self):
        with program_guard(Program(), Program()):
            input1 = fluid.create_lod_tensor(
                np.array([0.0, 3.0, 2.0, 4.0]), [[1, 1, 2]], fluid.CPUPlace())
            label1 = fluid.layers.data(
                name='label1', shape=[-1, 4], dtype="int64")
            # the input(input) of nce layer must be Variable.
            self.assertRaises(TypeError, fluid.layers.nce, input1, label1, 5)

            input2 = fluid.layers.data(
                name='input2', shape=[-1, 4], dtype="float32")
            label2 = fluid.create_lod_tensor(
                np.array([0.0, 3.0, 2.0, 4.0]), [[1, 1, 2]], fluid.CPUPlace())
            # the input(label) of nce layer must be Variable.
            self.assertRaises(TypeError, fluid.layers.nce, input2, label2, 5)

            input3 = fluid.layers.data(
                name='input3', shape=[-1, 4], dtype="float16")
            label3 = fluid.layers.data(
                name='label3', shape=[-1, 1], dtype="int64")
            # the data type of input(input) must be float32 or float64.
            self.assertRaises(TypeError, fluid.layers.nce, input3, label3, 5)

            input4 = fluid.layers.data(
                name='input4', shape=[-1, 4], dtype="float32")
            label4 = fluid.layers.data(
                name='label4', shape=[-1, 1], dtype="int32")
            # the data type of input(label) must be int64.
            self.assertRaises(TypeError, fluid.layers.nce, input4, label4, 5)


W
wanghaoshuang 已提交
255 256
if __name__ == '__main__':
    unittest.main()