kthvalue_op.cu 11.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/kthvalue_op.h"
#include "paddle/fluid/operators/top_k_function_cuda.h"
#include "paddle/fluid/operators/top_k_v2_op.h"
#ifdef __NVCC__
#include "cub/cub.cuh"
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
#endif

namespace paddle {
namespace operators {

int getBlockSize(int col) {
  if (col > 512)
    return 1024;
  else if (col > 256 && col <= 512)
    return 512;
  else if (col > 128 && col <= 256)
    return 256;
  else if (col > 64 && col <= 128)
    return 128;
  else
    return 64;
}

template <typename T>
bool SortKthvalue(const platform::CUDADeviceContext& ctx,
                  const framework::Tensor* input_tensor, const int64_t num_cols,
                  const int64_t num_rows, const int k,
                  framework::Tensor* out_tensor,
                  framework::Tensor* indices_tensor) {
  auto cu_stream = ctx.stream();
  framework::Tensor input_indices;
  const std::vector<int64_t> dims = {num_rows, num_cols};
  auto dim = framework::make_ddim(dims);
  input_indices.Resize(dim);
  input_indices.mutable_data<int64_t>(ctx.GetPlace());
  size_t temp_storage_bytes = -1;
  int block_size = getBlockSize(num_cols);
  unsigned int maxGridDimX = ctx.GetCUDAMaxGridDimSize().x;
  unsigned int grid_size = num_rows < maxGridDimX
                               ? static_cast<unsigned int>(num_rows)
                               : maxGridDimX;
  InitIndex<int64_t><<<grid_size, block_size, 0, cu_stream>>>(
      input_indices.data<int64_t>(), num_rows, num_cols);
  cub::CountingInputIterator<int64_t> counting_iter(0);
  cub::TransformInputIterator<int64_t, SegmentOffsetIter,
                              cub::CountingInputIterator<int64_t>>
      segment_offsets_t(counting_iter, SegmentOffsetIter(num_cols));
  T* sorted_values_ptr;
  int64_t* sorted_indices_ptr;
  framework::Tensor temp_values, temp_indices;
  const T* input = input_tensor->data<T>();
  T* values = out_tensor->data<T>();
  int64_t* indices = indices_tensor->mutable_data<int64_t>(ctx.GetPlace());
  temp_values.Resize(dim);
  temp_indices.Resize(dim);
  sorted_values_ptr = temp_values.mutable_data<T>(ctx.GetPlace());
  sorted_indices_ptr = temp_indices.mutable_data<int64_t>(ctx.GetPlace());
  auto err = cub::DeviceSegmentedRadixSort::SortPairs(
      nullptr, temp_storage_bytes, input, sorted_values_ptr,
      input_indices.data<int64_t>(), sorted_indices_ptr, num_cols * num_rows,
      num_rows, segment_offsets_t, segment_offsets_t + 1, 0, sizeof(T) * 8,
      cu_stream);
#ifdef __HIPCC__
  if (err != hipSuccess) {
    LOG(ERROR) << "KthvalueOP failed as could not launch "
                  "hipcub::DeviceSegmentedRadixSort::SortPairs, status: "
               << hipGetErrorString(err);
    return false;
  }
#else
  if (err != cudaSuccess) {
    LOG(ERROR) << "KthvalueOP failed as could not launch "
                  "cub::DeviceSegmentedRadixSort::SortPairs, status: "
               << cudaGetErrorString(err);
    return false;
  }
#endif
  framework::Tensor temp_storage;
  temp_storage.mutable_data<uint8_t>(ctx.GetPlace(), temp_storage_bytes);

  err = cub::DeviceSegmentedRadixSort::SortPairs(
      temp_storage.data<uint8_t>(), temp_storage_bytes, input,
      sorted_values_ptr, input_indices.data<int64_t>(), sorted_indices_ptr,
      num_cols * num_rows, num_rows, segment_offsets_t, segment_offsets_t + 1,
      0, sizeof(T) * 8, cu_stream);
#ifdef __HIPCC__
  if (err != hipSuccess) {
    LOG(ERROR) << "KthvalueOP failed as could not launch "
                  "hipcub::DeviceSegmentedRadixSort::SortPairs, "
               << temp_storage_bytes << ", status: " << hipGetErrorString(err);
    return false;
  }
#else
  if (err != cudaSuccess) {
    LOG(ERROR) << "KthvalueOP failed as could not launch "
                  "cub::DeviceSegmentedRadixSort::SortPairs, "
               << temp_storage_bytes << ", status: " << cudaGetErrorString(err);
    return false;
  }
#endif
  auto& dev = *ctx.eigen_device();
  const Eigen::DSizes<Eigen::DenseIndex, 2> slice_indices{0, k - 1};
  const Eigen::DSizes<Eigen::DenseIndex, 2> slice_sizes{num_rows, 1};
  auto e_indices = framework::EigenMatrix<int64_t>::From(*indices_tensor, dim);
  auto e_tmp_indices = framework::EigenMatrix<int64_t>::From(
      static_cast<const framework::Tensor>(temp_indices));
  std::vector<int> odims = {static_cast<int>(num_rows), static_cast<int>(1)};
  dim = framework::make_ddim(odims);
  auto e_values = framework::EigenMatrix<T>::From(*out_tensor, dim);
  auto e_tmp_values = framework::EigenMatrix<T>::From(
      static_cast<const framework::Tensor>(temp_values));

  EigenSlice<std::decay_t<decltype(dev)>, int64_t, 2>::Eval(
      dev, e_indices, e_tmp_indices, slice_indices, slice_sizes);
  EigenSlice<std::decay_t<decltype(dev)>, T, 2>::Eval(
      dev, e_values, e_tmp_values, slice_indices, slice_sizes);
  return true;
}

template <typename DeviceContext, typename T>
class KthvalueOpCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx.GetPlace()), true,
        platform::errors::InvalidArgument(
            "It must use CUDAPlace, you must check your device set."));
    auto* input = ctx.Input<framework::Tensor>("X");
    auto* output = ctx.Output<framework::Tensor>("Out");
    auto* indices = ctx.Output<framework::Tensor>("Indices");
    int k = static_cast<int>(ctx.Attr<int>("k"));
    int axis = static_cast<int>(ctx.Attr<int>("axis"));
    bool keepdim = static_cast<bool>(ctx.Attr<bool>("keepdim"));
    const auto& in_dims = input->dims();
    if (axis < 0) axis += in_dims.size();
    auto out_dims = output->dims();
    const T* input_data = input->data<T>();
    T* output_data = output->mutable_data<T>(ctx.GetPlace());
    int64_t* indices_data = indices->mutable_data<int64_t>(ctx.GetPlace());

    if (axis == in_dims.size() - 1) {
      const int64_t& input_height = framework::product(
          framework::slice_ddim(in_dims, 0, in_dims.size() - 1));
      const int64_t& input_width = in_dims[in_dims.size() - 1];
      const auto& dev_ctx = ctx.cuda_device_context();
      PADDLE_ENFORCE_EQ(SortKthvalue<T>(dev_ctx, input, input_width,
                                        input_height, k, output, indices),
                        true, platform::errors::External(
                                  "KthvalueOP: Error when use cub sorting"));
      return;
    } else {
      std::vector<int> trans;
      for (int i = 0; i < axis; i++) {
        trans.emplace_back(i);
      }
      trans.emplace_back(in_dims.size() - 1);
      for (int i = axis + 1; i < in_dims.size() - 1; i++) {
        trans.emplace_back(i);
      }
      trans.emplace_back(axis);
      if (!keepdim) {
        std::vector<int> tmp_out_shape;
        for (int i = 0; i < axis; i++) {
          tmp_out_shape.emplace_back(in_dims[i]);
        }
        tmp_out_shape.emplace_back(1);
        for (int i = axis + 1; i < in_dims.size(); i++) {
          tmp_out_shape.emplace_back(in_dims[i]);
        }
        framework::DDim tmp_out_dims = framework::make_ddim(tmp_out_shape);
        output->Resize(tmp_out_dims);
        indices->Resize(tmp_out_dims);
      }
      framework::DDim trans_dims(in_dims);
      framework::DDim trans_out_dims(in_dims);
      for (int i = 0; i < trans.size(); i++) {
        trans_dims[i] = in_dims[trans[i]];
        trans_out_dims[i] = in_dims[trans[i]];
      }
      trans_out_dims[in_dims.size() - 1] = 1;
      framework::Tensor trans_input;
      trans_input.mutable_data<T>(trans_dims, ctx.GetPlace());
      int ndims = trans.size();
      const auto& dev_ctx = ctx.cuda_device_context();
      TransCompute<platform::CUDADeviceContext, T>(ndims, dev_ctx, *input,
                                                   &trans_input, trans);
      framework::Tensor trans_ind, trans_out;
      trans_ind.mutable_data<int64_t>(trans_out_dims, ctx.GetPlace());
      trans_out.mutable_data<T>(trans_out_dims, ctx.GetPlace());
      const int64_t input_height = framework::product(
          framework::slice_ddim(trans_dims, 0, trans_dims.size() - 1));
      const int64_t input_width = trans_dims[trans_dims.size() - 1];
      PADDLE_ENFORCE_EQ(
          SortKthvalue<T>(dev_ctx, &trans_input, input_width, input_height, k,
                          &trans_out, &trans_ind),
          true,
          platform::errors::External("KthvalueOP: Error when use cub sorting"));
      TransCompute<platform::CUDADeviceContext, int64_t>(
          ndims, dev_ctx, trans_ind, indices, trans);
      TransCompute<platform::CUDADeviceContext, T>(ndims, dev_ctx, trans_out,
                                                   output, trans);
      if (!keepdim) {
        output->Resize(out_dims);
        indices->Resize(out_dims);
      }
    }
  }
};

template <typename DeviceContext, typename T>
class KthvalueOpGradCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(context.GetPlace()), true,
        platform::errors::InvalidArgument(
            "It must use CUDAPlace, you must check your device set."));
    auto* x = context.Input<framework::Tensor>("X");
    auto* out_grad =
        context.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* indices = context.Input<framework::Tensor>("Indices");
    auto* x_grad =
        context.Output<framework::Tensor>(framework::GradVarName("X"));
    int axis = context.Attr<int>("axis");
    int k = static_cast<int>(context.Attr<int>("k"));
    const auto& in_dims = x->dims();
    auto out_dims = indices->dims();
    if (axis < 0) axis += in_dims.size();
    T* x_grad_data = x_grad->mutable_data<T>(context.GetPlace());
    const T* out_grad_data = out_grad->data<T>();
    const int64_t* indices_data = indices->data<int64_t>();
    int pre, n, post;
    GetDims(in_dims, axis, &pre, &n, &post);
    auto& dev_ctx = context.cuda_device_context();
    int block_size = getBlockSize(post * k);
    int max_threads = dev_ctx.GetMaxPhysicalThreadCount();
    const int max_blocks = std::max(((max_threads - 1) / block_size + 1), 1);
    int grid_size = std::min(max_blocks, pre);
    AssignGradWithAxis<T><<<grid_size, block_size, 64 * 4, dev_ctx.stream()>>>(
        out_grad_data, indices_data, x_grad_data, pre, post, n, 1);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
    kthvalue,
    ops::KthvalueOpCUDAKernel<paddle::platform::CUDADeviceContext, float>,
    ops::KthvalueOpCUDAKernel<paddle::platform::CUDADeviceContext, double>,
    ops::KthvalueOpCUDAKernel<paddle::platform::CUDADeviceContext, int>,
    ops::KthvalueOpCUDAKernel<paddle::platform::CUDADeviceContext, int64_t>);
REGISTER_OP_CUDA_KERNEL(
    kthvalue_grad,
    ops::KthvalueOpGradCUDAKernel<paddle::platform::CUDADeviceContext, float>,
    ops::KthvalueOpGradCUDAKernel<paddle::platform::CUDADeviceContext, double>,
    ops::KthvalueOpGradCUDAKernel<paddle::platform::CUDADeviceContext, int>,
    ops::KthvalueOpGradCUDAKernel<paddle::platform::CUDADeviceContext,
                                  int64_t>);