recv_op.cc 3.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
武毅 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
武毅 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
武毅 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
武毅 已提交
14

15
#include <future>  // NOLINT
武毅 已提交
16 17
#include <ostream>

Y
Yi Wang 已提交
18 19 20 21
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
G
gongweibao 已提交
22
#include "paddle/fluid/operators/detail/macros.h"
Y
Yancey1989 已提交
23
#include "paddle/fluid/platform/profiler.h"
T
typhoonzero 已提交
24

武毅 已提交
25 26 27 28 29
namespace paddle {
namespace operators {

class RecvOp : public framework::OperatorBase {
 public:
30
  RecvOp(const std::string& type, const framework::VariableNameMap& inputs,
T
typhoonzero 已提交
31 32 33 34
         const framework::VariableNameMap& outputs,
         const framework::AttributeMap& attrs)
      : OperatorBase(type, inputs, outputs, attrs) {}

T
typhoonzero 已提交
35 36
  void RunImpl(const framework::Scope& scope,
               const platform::Place& place) const override {
T
typhoonzero 已提交
37 38
    auto outs = Outputs("Out");
    std::vector<std::string> epmap = Attr<std::vector<std::string>>("epmap");
Y
Yancey1989 已提交
39
    int sync_mode = Attr<int>("sync_mode");
Y
Yancey1989 已提交
40 41 42 43

    platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
    auto& ctx = *pool.Get(place);

44
    distributed::RPCClient* rpc_client =
W
Wu Yi 已提交
45 46
        distributed::RPCClient::GetInstance<RPCCLIENT_T>(
            Attr<int>("trainer_id"));
T
typhoonzero 已提交
47

48
    std::vector<distributed::VarHandlePtr> rets;
T
typhoonzero 已提交
49
    for (size_t i = 0; i < outs.size(); i++) {
M
minqiyang 已提交
50
      VLOG(3) << "getting " << outs[i] << " from " << epmap[i];
51
      rets.push_back(rpc_client->AsyncGetVar(epmap[i], ctx, scope, outs[i]));
武毅 已提交
52
    }
Y
Yancey1989 已提交
53
    if (sync_mode) {
54 55 56
      for (size_t i = 0; i < rets.size(); i++) {
        PADDLE_ENFORCE(rets[i]->Wait(), "internal error in RPCClient");
      }
Y
Yancey1989 已提交
57
    }
武毅 已提交
58 59 60 61 62
  }
};

class RecvOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
63
  void Make() {
64 65
    AddInput("X", "(Any) Dummy inputs, used for control dependency")
        .AsDuplicable();
T
typhoonzero 已提交
66
    AddOutput("Out", "(Tensor) Variables to get from server.").AsDuplicable();
武毅 已提交
67 68 69
    AddComment(R"DOC(
Recv operator

70
This operator can get variables from server side.
武毅 已提交
71
)DOC");
T
typhoonzero 已提交
72 73 74 75
    AddAttr<std::vector<std::string>>("epmap",
                                      "(string vector, default 127.0.0.1:6164)"
                                      "Server endpoints in the order of input "
                                      "variables for mapping")
Y
Yancey1989 已提交
76
        .SetDefault({});
W
Wu Yi 已提交
77
    AddAttr<int>("trainer_id", "trainer id from 0 ~ worker_num.").SetDefault(0);
Y
Yancey1989 已提交
78
    AddAttr<int>("sync_mode",
Y
Yancey1989 已提交
79 80 81
                 "(int, default 0)"
                 "sync recv or async recv.")
        .SetDefault(0);
武毅 已提交
82 83 84
  }
};

85 86 87 88 89
class RecvOpShapeInference : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext* ctx) const override {}
};

武毅 已提交
90 91 92 93 94
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

95 96
REGISTER_OPERATOR(recv, ops::RecvOp, paddle::framework::EmptyGradOpMaker,
                  ops::RecvOpMaker, ops::RecvOpShapeInference);