trt_op_converter_pass.cc 7.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/infrt/dialect/tensorrt/trt_op_converter_pass.h"
W
Wilber 已提交
15 16

#include <glog/logging.h>
17 18
#include <mlir/IR/Builders.h>
#include <mlir/Transforms/DialectConversion.h>
W
Wilber 已提交
19 20

#include "paddle/infrt/dialect/dense_tensor.h"
21
#include "paddle/infrt/dialect/pd/ir/pd_ops.h"
W
Wilber 已提交
22 23
#include "paddle/infrt/dialect/phi/ir/infrt_phi_tensor.h"
#include "paddle/infrt/dialect/phi/ir/phi_base.h"
24
#include "paddle/infrt/dialect/tensorrt/convert.h"
S
Shang Zhizhou 已提交
25
#include "paddle/infrt/dialect/tensorrt/trt_dialect_types.h"
W
Wilber 已提交
26
#include "paddle/infrt/dialect/tensorrt/trt_ops.h"
27 28 29 30

namespace infrt {
namespace trt {

31 32 33 34 35 36 37 38 39 40 41 42 43 44
#ifdef INFRT_WITH_TRT

#define STRING_TO_ENUM_TYPE(enum_type) enum_type
#define STRING_TO_ENUM_VALUE(enum_value) enum_value
#include <NvInfer.h>

#else  // INFRT_WITH_TRT

#define STRING_TO_ENUM_TYPE(enum_type) std::string
#define STRING_TO_ENUM_VALUE(enum_value) #enum_value

#endif  // INFRT_WITH_TRT

template <typename T>
45 46 47
::mlir::IntegerAttr createNvinferEnumAttr(
    ::mlir::PatternRewriter &rewriter,  // NOLINT
    T enum_value) {
48 49 50 51 52
  return rewriter.getSI32IntegerAttr((int32_t)enum_value);
}

template <>
::mlir::IntegerAttr createNvinferEnumAttr<std::string>(
53
    ::mlir::PatternRewriter &rewriter, std::string enum_value) {  // NOLINT
54 55 56 57
  (void)enum_value;
  return rewriter.getSI32IntegerAttr(-1);
}

58 59
#include "paddle/infrt/dialect/tensorrt/pd_lower_to_trt.cpp.inc"  // NOLINT

S
Shang Zhizhou 已提交
60
struct PD2TRT_GraphLower : public ::mlir::RewritePattern {
61
  explicit PD2TRT_GraphLower(::mlir::MLIRContext *context)
62 63
      : ::mlir::RewritePattern(
            "infrt.graph", 1, context, {"trt.create_engine"}) {}
S
Shang Zhizhou 已提交
64 65
  ::mlir::LogicalResult matchAndRewrite(
      ::mlir::Operation *op, ::mlir::PatternRewriter &rewriter) const override {
66
    auto casted_op = ::llvm::dyn_cast<::infrt::GraphOp>(op);
S
Shang Zhizhou 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79
    ::mlir::Operation::operand_range inputs = casted_op.inputs();
    auto ods_loc = rewriter.getFusedLoc(op->getLoc());
    CreateEngineOp create_engine_op;
    // inputs
    ::mlir::SmallVector<::mlir::Value, 4> trt_inputs;
    for (auto v : inputs) {
      trt_inputs.push_back(v);
    }
    create_engine_op = rewriter.create<CreateEngineOp>(
        ods_loc,
        ::llvm::SmallVector<mlir::Type, 4>(1, EngineType::get()),
        trt_inputs,
        true /*run_once*/);
W
Wilber 已提交
80 81 82 83 84
    auto &block = create_engine_op.body().emplaceBlock();
    block.getOperations().splice(block.begin(),
                                 casted_op.getBody()->getOperations(),
                                 casted_op.getBody()->begin(),
                                 casted_op.getBody()->end());
S
Shang Zhizhou 已提交
85

W
Wilber 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
    // trt.compute
    ::llvm::SmallVector<::mlir::Value, 4> replace_values2;
    auto ctx_op = rewriter.create<::infrt::phi::CreateGPUContextOp>(
        ods_loc,
        infrt::phi::ContextType::get(rewriter.getContext(),
                                     infrt::TargetType::GPU));
    auto compute_op = rewriter.create<EngineComputeOp>(
        ods_loc,
        ::infrt::DenseTensorListType::get(rewriter.getContext()),
        create_engine_op.engine(),
        ctx_op.output());
    auto tensor_list_val = compute_op.outputs();
    for (size_t i = 0; i < casted_op.getNumResults(); ++i) {
      auto res = casted_op->getResult(i);
      auto int_attr = mlir::IntegerAttr::get(
          mlir::IntegerType::get(rewriter.getContext(), 32), i);
      auto get_tensor_op = rewriter.create<::infrt::dt::TensorListGetTensorOp>(
          ods_loc, res.getType(), tensor_list_val, int_attr);
      replace_values2.push_back(get_tensor_op.output());
S
Shang Zhizhou 已提交
105
    }
W
Wilber 已提交
106 107
    ctx_op->moveBefore(ctx_op->getBlock(), ctx_op->getBlock()->begin());
    rewriter.replaceOp(op, replace_values2);
S
Shang Zhizhou 已提交
108 109 110 111
    return ::mlir::success();
  }
};

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
struct PD2TRT_Batch_Norm_Lower : public ::mlir::RewritePattern {
  explicit PD2TRT_Batch_Norm_Lower(::mlir::MLIRContext *context)
      : ::mlir::RewritePattern("pd.batch_norm", 1, context, {"trt.scaleNd"}) {}
  ::mlir::LogicalResult matchAndRewrite(
      ::mlir::Operation *op, ::mlir::PatternRewriter &rewriter) const override {
    auto casted_op = ::llvm::dyn_cast<infrt::pd::Batch_normOp>(op);
    ::mlir::SmallVector<::mlir::Value, 4> operands;
    ::mlir::Operation::operand_range Input = casted_op.getODSOperands(0);
    ::mlir::Operation::operand_range Scale = casted_op.getODSOperands(1);
    ::mlir::Operation::operand_range Bias = casted_op.getODSOperands(2);

    // TODO(weishengying) : recompute this via params
    operands.push_back((*Input.begin()));
    operands.push_back((*Scale.begin()));
    operands.push_back((*Bias.begin()));
    operands.push_back((*Bias.begin()));

    trt::ScaleNdOp scaleNd_op;
    // inputs
    ::mlir::SmallVector<::mlir::Value, 4> trt_inputs;
    for (auto v : operands) {
      trt_inputs.push_back(v);
    }

    // resultTypes
    ::mlir::SmallVector<::mlir::Type, 4> resultTypes;
    for (auto v : casted_op.getODSResults(0)) {
      resultTypes.push_back(v.getType());
    }

    // attributes
    ::mlir::SmallVector<::mlir::NamedAttribute, 8> attributes;
    {
      auto mode_attr = rewriter.getI32IntegerAttr(1);
      attributes.emplace_back(rewriter.getStringAttr("mode"), mode_attr);
    }

    {
      auto axis_attr = rewriter.getI32IntegerAttr(-1);
      attributes.emplace_back(rewriter.getStringAttr("axis"), axis_attr);
    }
    auto result = rewriter
                      .create<trt::ScaleNdOp>(
                          op->getLoc(), resultTypes, operands, attributes)
                      .getODSResults(0);
    ::llvm::SmallVector<::mlir::Value, 4> tblgen_repl_values;
    // TODO(weishengying) : update it
    for (uint32_t i = 0; i < casted_op.getNumResults(); i++) {
      for (auto v : ::llvm::SmallVector<::mlir::Value, 4>{result}) {
        tblgen_repl_values.push_back(v);
      }
    }
    rewriter.replaceOp(op, tblgen_repl_values);
    return ::mlir::success();
  }
};

169 170 171
void TRTOpConverterPass::runOnOperation() {
  // The first thing to define is the conversion target. This will define the
  // final target for this lowering.
172
  ::mlir::ConversionTarget target(getContext());
173 174 175 176 177

  // We define the specific operations, or dialects, that are legal targets for
  // this lowering. In our case, we are lowering to TensorRTDialect from
  // PaddleDialect
  target.addLegalDialect<TensorRTDialect>();
W
Wilber 已提交
178 179 180
  target.addLegalDialect<::infrt::phi::PHIDialect>();
  target.addLegalDialect<::infrt::dt::DTDialect>();
  target.addLegalDialect<phi::PHIDenseTensorDialect>();
181 182 183

  // Now that the conversion target has been defined, we just need to provide
  // the set of patterns that will lower the TensorRT operations.
184
  ::mlir::RewritePatternSet patterns(&getContext());
185
  populateWithGenerated(patterns);
186
  patterns.add<PD2TRT_Batch_Norm_Lower>(&getContext());
S
Shang Zhizhou 已提交
187
  patterns.add<PD2TRT_GraphLower>(&getContext());
188 189 190 191

  // With the target and rewrite patterns defined, we can now attempt the
  // conversion. The conversion will signal failure if any of our `illegal`
  // operations were not converted successfully.
192
  if (::mlir::failed(
193 194 195 196 197 198
          applyPartialConversion(getOperation(), target, std::move(patterns))))
    signalPassFailure();
}

}  // namespace trt
}  // namespace infrt