embedding_grad_kernel.cu 9.3 KB
Newer Older
H
hong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16
#include "paddle/phi/kernels/embedding_grad_kernel.h"

17
#include "paddle/fluid/framework/mixed_vector.h"
H
hong 已提交
18 19
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
W
Wang Xin 已提交
20
#include "paddle/phi/backends/gpu/gpu_primitives.h"
H
hong 已提交
21 22 23
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
24
#include "paddle/phi/kernels/funcs/embedding_util.h"
H
hong 已提交
25

26 27
DECLARE_bool(cudnn_deterministic);

H
hong 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
namespace phi {

template <typename InT, typename OutT>
__global__ void InputTypeConvert(const InT* in_ids,
                                 const int64_t K,
                                 OutT* out_ids) {
  for (int i = 0; i < K; i++) {
    out_ids[i] = static_cast<OutT>(in_ids[i]);
  }
}

template <typename T, typename IdT>
__global__ void EmbeddingGrad(T* table,
                              const T* output,
                              const IdT* ids,
                              const int64_t N,
                              const int64_t K,
                              const int64_t D) {
  int idx = threadIdx.x;
  int idy = blockIdx.x + threadIdx.y * gridDim.x;

  while (idy < K) {
    auto id = static_cast<int64_t>(ids[idy]);
    const T* out = output + idy * D;
    T* tab = table + id * D;
#ifdef PADDLE_WITH_CUDA
W
Wang Xin 已提交
54
    phi::VectorizedAtomicAddPerBlock(D, idx, blockDim.x, out, tab);
H
hong 已提交
55 56
#else
    for (int i = idx; i < D; i += blockDim.x) {
W
Wang Xin 已提交
57
      phi::CudaAtomicAdd(&tab[i], out[i]);
H
hong 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
    }
#endif
    idy += blockDim.y * gridDim.x;
  }
}

template <typename T, typename Context>
struct EmbeddingGradCUDAFunctor {
  EmbeddingGradCUDAFunctor(const Context& dev_ctx,
                           const DenseTensor& input,
                           const DenseTensor& weight,
                           const DenseTensor& out_grad,
                           int64_t padding_idx,
                           DenseTensor* weight_grad)
      : dev_ctx_(dev_ctx),
        input_(input),
        weight_(weight),
        out_grad_(out_grad),
        padding_idx_(padding_idx),
        weight_grad_(weight_grad) {}

  template <typename IdT>
  void apply() {
    // Since paddings are not trainable and fixed in forward, the gradient of
    // paddings makes no sense and we don't deal with it in backward.
    {
      auto d_output_t = out_grad_;
      auto d_table_t = weight_grad_;

      int N = weight_grad_->dims()[0];
      int D = weight_grad_->dims()[1];
      int K = input_.numel();

      const T* d_output = d_output_t.template data<T>();
      const auto* ids = input_.template data<IdT>();
      T* d_table = dev_ctx_.template Alloc<T>(d_table_t);

#ifdef PADDLE_WITH_HIP
      PADDLE_ENFORCE_GPU_SUCCESS(
          hipMemsetAsync(d_table, 0, N * D * sizeof(T), dev_ctx_.stream()));
#else
      PADDLE_ENFORCE_GPU_SUCCESS(
          cudaMemsetAsync(d_table, 0, N * D * sizeof(T), dev_ctx_.stream()));
#endif

      const int gridx = 2 * dev_ctx_.GetSMCount();
      dim3 threads(128, 8);
      dim3 grids(gridx, 1);
106 107 108 109

      if (FLAGS_cudnn_deterministic) {
        VLOG(2) << "Run grad kernel of embedding with single thread.";
        grids.x = 1;
110
        threads.y = 1;
111
      }
H
hong 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
      EmbeddingGrad<T, IdT><<<grids, threads, 0, dev_ctx_.stream()>>>(
          d_table, d_output, ids, N, K, D);
    }
  }

 private:
  const phi::GPUContext& dev_ctx_;
  const DenseTensor& input_;
  const DenseTensor& weight_;
  const DenseTensor& out_grad_;
  int64_t padding_idx_;
  DenseTensor* weight_grad_;
};

template <typename T, typename Context>
void EmbeddingGradKernel(const Context& ctx,
                         const DenseTensor& input,
                         const DenseTensor& weight,
                         const DenseTensor& out_grad,
                         int64_t padding_idx,
                         DenseTensor* weight_grad) {
  EmbeddingGradCUDAFunctor<T, Context> functor(
      ctx, input, weight, out_grad, padding_idx, weight_grad);

  if (input.dtype() == phi::DataType::INT32) {
    functor.template apply<int>();
  } else if (input.dtype() == phi::DataType::INT64) {
    functor.template apply<int64_t>();
140 141
  } else if (input.dtype() == phi::DataType::INT16) {
    functor.template apply<int16_t>();
H
hong 已提交
142 143
  } else {
    PADDLE_THROW(phi::errors::Unimplemented(
144
        "emebdding input only support int16, int32 and int64"));
H
hong 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
  }
}

template <typename T, typename Context>
struct EmbeddingSparseGradCUDAFunctor {
  EmbeddingSparseGradCUDAFunctor(const Context& dev_ctx,
                                 const DenseTensor& input,
                                 const DenseTensor& weight,
                                 const DenseTensor& out_grad,
                                 int64_t padding_idx,
                                 SelectedRows* weight_grad)
      : dev_ctx_(dev_ctx),
        input_(input),
        weight_(weight),
        out_grad_(out_grad),
        padding_idx_(padding_idx),
        weight_grad_(weight_grad) {}

  template <typename IdT>
  void apply() {
    // Since paddings are not trainable and fixed in forward, the gradient of
    // paddings makes no sense and we don't deal with it in backward.

    const auto* ids_data = input_.template data<IdT>();
    auto* d_table = weight_grad_;
    auto* table = &weight_;
    auto* d_output = &out_grad_;
    int64_t ids_num = input_.numel();
    dim3 threads(128, 8);
    dim3 grids(8, 1);
    auto stream = dev_ctx_.stream();
    paddle::framework::Vector<int64_t> new_rows;
    new_rows.resize(ids_num);
    auto gpu_place = dev_ctx_.GetPlace();

    paddle::framework::MixVector<int64_t> mixv_new_rows(&new_rows);
    if (!std::is_same<IdT, int64_t>::value) {
      InputTypeConvert<<<grids, threads, 0, stream>>>(
          ids_data, ids_num, mixv_new_rows.MutableData(gpu_place));
    } else {
      paddle::memory::Copy(gpu_place,
                           mixv_new_rows.CUDAMutableData(gpu_place),
                           gpu_place,
                           ids_data,
                           ids_num * sizeof(int64_t),
                           stream);
    }

    mixv_new_rows.CopyToCPU();
    d_table->set_rows(new_rows);

    auto* d_table_value = d_table->mutable_value();
    d_table_value->Resize({ids_num, table->dims()[1]});
    dev_ctx_.template Alloc<T>(d_table_value);

    auto* d_table_data = d_table_value->template data<T>();
    auto* d_output_data = d_output->template data<T>();
    auto d_output_dims = d_output->dims();
    auto d_output_dims_2d =
        phi::flatten_to_2d(d_output_dims, d_output_dims.size() - 1);
    PADDLE_ENFORCE_EQ(d_table_value->dims(),
                      d_output_dims_2d,
                      phi::errors::InvalidArgument(
                          "ShapeError: The shape of lookup_table@Grad and "
                          "output@Grad should be same. "
                          "But received lookup_table@Grad's shape = [%s], "
                          "output@Grad's shape = [%s].",
                          d_table_value->dims(),
                          d_output_dims_2d));
    paddle::memory::Copy(gpu_place,
                         d_table_data,
                         gpu_place,
                         d_output_data,
                         d_output->numel() * sizeof(T),
                         stream);
  }

 private:
  const phi::GPUContext& dev_ctx_;
  const DenseTensor& input_;
  const DenseTensor& weight_;
  const DenseTensor& out_grad_;
  int64_t padding_idx_;
  SelectedRows* weight_grad_;
};

template <typename T, typename Context>
void EmbeddingSparseGradKernel(const Context& ctx,
                               const DenseTensor& input,
                               const DenseTensor& weight,
                               const DenseTensor& out_grad,
                               int64_t padding_idx,
                               SelectedRows* weight_grad) {
  EmbeddingSparseGradCUDAFunctor<T, Context> functor(
      ctx, input, weight, out_grad, padding_idx, weight_grad);

  if (input.dtype() == phi::DataType::INT32) {
    functor.template apply<int>();
  } else if (input.dtype() == phi::DataType::INT64) {
    functor.template apply<int64_t>();
245 246
  } else if (input.dtype() == phi::DataType::INT16) {
    functor.template apply<int16_t>();
H
hong 已提交
247
    PADDLE_THROW(phi::errors::Unimplemented(
248
        "emebdding input only support int16, int32 and int64"));
H
hong 已提交
249 250 251 252 253 254 255 256 257 258 259
  }
}

}  // namespace phi

PD_REGISTER_KERNEL(embedding_grad,
                   GPU,
                   ALL_LAYOUT,
                   phi::EmbeddingGradKernel,
                   float,
                   double,
260 261
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}
H
hong 已提交
262 263 264 265 266 267 268

PD_REGISTER_KERNEL(embedding_sparse_grad,
                   GPU,
                   ALL_LAYOUT,
                   phi::EmbeddingSparseGradKernel,
                   float,
                   double,
269 270
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}