where_op.cc 6.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/where_op.h"

namespace paddle {
namespace operators {

class WhereOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("Condition"), "Input", "Condition", "Where");
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Where");
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "Where");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Where");

    auto cond_dims = ctx->GetInputDim("Condition");
    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
    PADDLE_ENFORCE_EQ(
        cond_dims, x_dims,
        platform::errors::InvalidArgument(
            "The dims of Inputs(Condition) and Inputs(X) should be same. "
            "But received Condition's shape is [%s], X's shape is [%s]",
            cond_dims, x_dims));
    PADDLE_ENFORCE_EQ(x_dims, y_dims,
                      platform::errors::InvalidArgument(
                          "The dims of Inputs(X) and Inputs(Y) should be same. "
                          "But received X's shape is [%s], Y's shape is [%s]",
                          x_dims, y_dims));

    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
    ctx->ShareLoD("X", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
  }
};

class WhereGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("Condition"), "Input", "Condition", "Where");
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Where");
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "Where");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   framework::GradVarName("Out"), "Where");

    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");

    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");

    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
    if (ctx->HasOutput(y_grad_name)) {
      ctx->SetOutputDim(y_grad_name, y_dims);
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.GetPlace());
  }
};

class WhereOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("Condition",
             "(Tensor) A bool tensor whose rank is at least 1. When Condition "
             "is True, yield x, otherwise yield y");
    AddInput("X",
             "(Tensor), The first input tensor of where op. When the "
             "corresponding position of the condition is true, the output "
             "takes the element of X.");
    AddInput("Y",
             "(Tensor), The second input tensor of where op. When the "
             "corresponding position of condition is false, the output takes "
             "the element of Y.");
    AddOutput("Out", "(Tensor), The output tensor of mul op.");
    AddComment(R"DOC(
      Where Operator.
      Return a tensor of elements selected from either $X$ or $Y$, depending on condition.
      The equation is:
      $$
      Out_i =
      \begin{cases}
      \X_i, \quad  \text{if} \ cond_i is True \\
      \Y_i, \quad  \text{if} \ cond_i is False \\
      \end{cases}
      $$
)DOC");
  }
};

template <typename T>
class WhereOpGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> grad) const override {
    grad->SetType("where_grad");
    grad->SetInput("Condition", this->Input("Condition"));
    grad->SetInput("X", this->Input("X"));
    grad->SetInput("Y", this->Input("Y"));
    grad->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
  }
};

DECLARE_NO_NEED_BUFFER_VARS_INFERER(WhereGradNoNeedBufferVarsInference, "X",
                                    "Y");
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(where, ops::WhereOp, ops::WhereOpMaker,
                  ops::WhereOpGradMaker<paddle::framework::OpDesc>,
                  ops::WhereOpGradMaker<paddle::imperative::OpBase>);

REGISTER_OPERATOR(where_grad, ops::WhereGradOp,
                  ops::WhereGradNoNeedBufferVarsInference);
REGISTER_OP_CPU_KERNEL(
    where, ops::WhereKernel<paddle::platform::CPUDeviceContext, float>,
    ops::WhereKernel<paddle::platform::CPUDeviceContext, double>,
    ops::WhereKernel<paddle::platform::CPUDeviceContext, int>,
    ops::WhereKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
    where_grad, ops::WhereGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::WhereGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::WhereGradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::WhereGradKernel<paddle::platform::CPUDeviceContext, int64_t>);