creation.py 10.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
16
from paddle import _C_ops, _legacy_C_ops
17 18 19 20
from paddle.fluid.framework import core, dygraph_only
from paddle.fluid.framework import _current_expected_place, _get_paddle_place
from paddle.tensor import to_tensor, max
from paddle.fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
21

22 23
import numpy as np

24 25 26 27 28 29 30 31 32 33 34 35 36
__all__ = [
    'sparse_coo_tensor',
    'sparse_csr_tensor',
]


def _handle_dtype(data, dtype):
    if dtype:
        if convert_dtype(dtype) != convert_dtype(data.dtype):
            return data.astype(convert_dtype(dtype))
    return data


37
def _infer_dense_shape(indices, values):
38 39 40
    assert len(indices.shape) == 2
    lens = max(indices, axis=1)
    lens = lens + 1
41 42 43 44
    lens = lens.numpy()
    if len(values.shape) > 1:
        lens = np.append(lens, values.shape[1:])
    return list(lens)
45 46


47 48 49 50
def _get_place(place):
    place = _get_paddle_place(place)
    if place is None:
        place = _current_expected_place()
51 52 53
    elif not isinstance(
            place,
        (core.Place, core.CPUPlace, core.CUDAPinnedPlace, core.CUDAPlace)):
54 55 56 57 58 59
        raise ValueError(
            "'place' must be any of paddle.Place, paddle.CPUPlace, paddle.CUDAPinnedPlace, paddle.CUDAPlace"
        )
    return place


60 61 62 63 64 65 66
def _check_indices_dtype(dtype):
    if dtype not in [paddle.int8, paddle.int16, paddle.int32, paddle.int64]:
        raise TypeError(
            "the dtype of indices must be 'int8' or 'int16' or 'int32' or 'int64'"
        )


67 68 69 70 71 72 73 74
@dygraph_only
def sparse_coo_tensor(indices,
                      values,
                      shape=None,
                      dtype=None,
                      place=None,
                      stop_gradient=True):
    r"""
75
    Constructs a sparse ``paddle.Tensor`` in coordinate format according to the indices
76 77 78 79 80 81 82 83
    and values of the specified non-zero elements.

    Args:
        indices(list|tuple|ndarray|Tensor): the indices of non-zero elements.
            Can be a list, tuple, numpy\.ndarray, paddle\.Tensor. The indices must be 2-D.
        values(list|tuple|ndarray|Tensor): Initial values for the tensor.
            Can be a scalar, list, tuple, numpy\.ndarray, paddle\.Tensor.
        shape(list|tuple, optional): The shape of the sparse tensor also represents the shape of
84
            original dense tensor. If not provided the smallest shape will be inferred to
85
            hold all elements.
86
        dtype(str|np.dtype, optional): The desired data type of returned tensor. Can be 'bool' , 'float16' ,
87
            'float32' , 'float64' , 'int8' , 'int16' , 'int32' , 'int64' , 'uint8',
88
            'complex64' , 'complex128'. Default: None, infers dtype from ``data``
89
            except for python float number which gets dtype from ``get_default_type`` .
90 91 92
        place(CPUPlace|CUDAPinnedPlace|CUDAPlace|str, optional): The place to allocate Tensor. Can be
            CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place. If ``place`` is
            string, It can be ``cpu``, ``gpu:x`` and ``gpu_pinned``, where ``x`` is the index of the GPUs.
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
        stop_gradient(bool, optional): Whether to block the gradient propagation of Autograd. Default: True.

    Returns:
        Tensor: A Tensor constructed from ``indices`` and ``values`` .

    Examples:

    .. code-block:: python

        import paddle
        from paddle.fluid.framework import _test_eager_guard

        with _test_eager_guard():
            indices = [[0, 1, 2], [1, 2, 0]]
            values = [1.0, 2.0, 3.0]
108
            dense_shape = [3, 3]
109
            coo = paddle.incubate.sparse.sparse_coo_tensor(indices, values, dense_shape)
110 111 112 113 114 115 116
            # print(coo)
            # Tensor(shape=[2, 3], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True,
            #       indices=[[0, 1, 2],
            #                [1, 2, 0]],
            #       values=[1., 2., 3.])
    """

117 118
    place = _get_place(place)

119
    if not isinstance(indices, core.eager.Tensor):
120 121 122 123
        indices = to_tensor(indices,
                            dtype=None,
                            place=place,
                            stop_gradient=True)
124 125 126 127
    if not isinstance(values, core.eager.Tensor):
        values = to_tensor(values, dtype, place, stop_gradient)
    if len(indices.shape) != 2:
        raise ValueError("'indices' must be 2-D.")
128

129 130 131 132 133 134 135
    nnz = indices.shape[1]
    sparse_dim = indices.shape[0]

    _check_indices_dtype(indices.dtype)

    if nnz != values.shape[0]:
        raise ValueError(
136 137
            "the indices and values must have same number of non-zero, but get {} and {}"
            .format(nnz, values.shape[0]))
138 139 140

    dense_dim = len(values.shape) - 1

141
    if not indices.place._equals(place):
142
        indices = indices._copy_to(place, False)
143 144

    if not values.place._equals(place):
145 146
        values = values._copy_to(place, False)
    values = _handle_dtype(values, dtype)
147 148
    values.stop_gradient = stop_gradient

149 150
    min_shape = _infer_dense_shape(indices, values)

151
    if shape is None:
152 153 154
        shape = min_shape
    else:
        if shape < min_shape:
155 156 157
            raise ValueError(
                "the minimun shape required is {}, but get {}".format(
                    min_shape, shape))
158 159
        if len(shape) != sparse_dim + dense_dim:
            raise ValueError(
160 161
                "the number of dimensions(len(shape) must be sparse_dim({}) + dense_dim({}), but get {}"
                .format(sparse_dim, dense_dim, len(shape)))
162

163
    return _C_ops.sparse_sparse_coo_tensor(values, indices, shape)
164 165 166 167 168 169 170 171 172 173 174 175


#TODO: need to support shape is None
@dygraph_only
def sparse_csr_tensor(crows,
                      cols,
                      values,
                      shape,
                      dtype=None,
                      place=None,
                      stop_gradient=True):
    r"""
176
    Constructs a sparse ``paddle.Tensor`` in CSR(Compressed Sparse Row) format according to the
177
    ``crows``, ``cols`` and ``values``.
178
    Currently, the crows and cols of each batch must be incrementd.
179 180

    Args:
181 182 183
        crows(list|tuple|ndarray|Tensor): 1-D array, each element in the rows represents the
            starting position of the first non-zero element of each row in values.
            Can be a list, tuple, numpy\.ndarray, paddle\.Tensor.
184
        cols(list|tuple|ndarray|Tensor): 1-D array, the column of non-zero elements.
185
            Can be a list, tuple, numpy\.ndarray, paddle\.Tensor.
186 187 188
        values(list|tuple|ndarray|Tensor): 1-D array, the non-zero elements.
            Can be a scalar, list, tuple, numpy\.ndarray, paddle\.Tensor.
        shape(list|tuple, optional): The shape of the sparse tensor also represents the shape of
189
            original dense tensor.
190
            hold all elements.
191
        dtype(str|np.dtype, optional): The desired data type of returned tensor. Can be 'bool' , 'float16' ,
192
            'float32' , 'float64' , 'int8' , 'int16' , 'int32' , 'int64' , 'uint8',
193
            'complex64' , 'complex128'. Default: None, infers dtype from ``data``
194
            except for python float number which gets dtype from ``get_default_type`` .
195 196 197
        place(CPUPlace|CUDAPinnedPlace|CUDAPlace|str, optional): The place to allocate Tensor. Can be
            CPUPlace, CUDAPinnedPlace, CUDAPlace. Default: None, means global place. If ``place`` is
            string, It can be ``cpu``, ``gpu:x`` and ``gpu_pinned``, where ``x`` is the index of the GPUs.
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
        stop_gradient(bool, optional): Whether to block the gradient propagation of Autograd. Default: True.

    Returns:
        Tensor: A Tensor constructed from ``crows``, ``cols`` and ``values`` .

    Examples:

    .. code-block:: python

        import paddle
        from paddle.fluid.framework import _test_eager_guard

        with _test_eager_guard():
            crows = [0, 2, 3, 5]
            cols = [1, 3, 2, 0, 1]
            values = [1, 2, 3, 4, 5]
            dense_shape = [3, 4]
215
            csr = paddle.incubate.sparse.sparse_csr_tensor(crows, cols, values, dense_shape)
216 217 218 219 220 221
            # print(csr)
            # Tensor(shape=[3, 4], dtype=paddle.int64, place=Place(gpu:0), stop_gradient=True,
            #       crows=[0, 2, 3, 5],
            #       cols=[1, 3, 2, 0, 1],
            #       values=[1, 2, 3, 4, 5])
    """
222 223 224

    place = _get_place(place)

225 226 227 228 229 230
    if not isinstance(crows, core.eager.Tensor):
        crows = to_tensor(crows, dtype=None, place=place, stop_gradient=True)
    if not isinstance(cols, core.eager.Tensor):
        cols = to_tensor(cols, dtype=None, place=place, stop_gradient=True)
    if not isinstance(values, core.eager.Tensor):
        values = to_tensor(values, dtype, place, stop_gradient)
231 232 233 234 235

    _check_indices_dtype(crows.dtype)
    _check_indices_dtype(cols.dtype)

    if len(shape) != 2 and len(shape) != 3:
236
        raise ValueError(
237 238
            "SparseCsrTensor only support 2-D or 3-D matrix. but get shape {}".
            format(shape))
Z
zhangkaihuo 已提交
239
    rows = shape[len(shape) - 2]
240

241
    if not crows.place._equals(place):
242
        crows = crows._copy_to(place, False)
243 244

    if not cols.place._equals(place):
245
        cols = cols._copy_to(place, False)
246 247

    if not values.place._equals(place):
248 249
        values = values._copy_to(place, False)
    values = _handle_dtype(values, dtype)
250
    values.stop_gradient = stop_gradient
251 252 253 254 255 256 257 258

    if len(crows.shape) != 1 or len(cols.shape) != 1 or len(values.shape) != 1:
        raise ValueError("The 'crows', 'cols' and 'values' must be 1-D.")

    if (len(cols) != len(values)):
        raise ValueError("the length of cols must be same as length of values")

    if len(shape) == 2:
Z
zhangkaihuo 已提交
259
        if crows.shape[0] != rows + 1:
260
            raise ValueError(
261
                "The length({}) of crows must be equal to the rows({})+1 of matrix."
Z
zhangkaihuo 已提交
262
                .format(crows.shape[0], rows))
263 264 265 266 267 268 269
        if crows[0] != 0:
            raise ValueError("the 0th value of crows must be 0")

        if crows[-1] != values.shape[0]:
            raise ValueError(
                "the last value of crows must be equal the number of non-zero")
    else:
Z
zhangkaihuo 已提交
270
        if crows.shape[0] % (rows + 1) != 0:
271
            raise ValueError(
272
                "The length({}) of crows must be divisible the rows({})+1 of matrix."
Z
zhangkaihuo 已提交
273
                .format(crows.shape[0], rows))
274
    # TODO(zkh2016): check whether the value in crows and cols is legal
275

276 277
    return core.eager.sparse_csr_tensor(crows, cols, values, shape,
                                        stop_gradient)