elementwise_add_op.cc 9.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/elementwise/elementwise_add_op.h"
16

17
#include <string>
18

W
Wu Yi 已提交
19
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
20 21 22

namespace paddle {
namespace platform {
23 24
template <typename T>
struct complex;
25 26
}  // namespace platform
}  // namespace paddle
27

W
wanghuancoder 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40
namespace paddle {
namespace framework {
class OpDesc;
}  // namespace framework
namespace imperative {
class OpBase;
}  // namespace imperative
namespace platform {
class CPUDeviceContext;
struct CPUPlace;
}  // namespace platform
}  // namespace paddle

41 42 43
namespace paddle {
namespace operators {

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
template <typename T>
struct SameDimsElemwiseAdd<
    platform::CPUDeviceContext, T,
    typename std::enable_if<std::is_floating_point<T>::value>::type> {
  void operator()(const framework::ExecutionContext &ctx,
                  const framework::Tensor *x, const framework::Tensor *y,
                  framework::Tensor *z) {
    auto blas = math::GetBlas<platform::CPUDeviceContext, T>(ctx);
    blas.VADD(x->numel(), x->data<T>(), y->data<T>(), z->data<T>());
  }
};

template <typename T>
struct SameDimsElemwiseAdd<
    platform::CPUDeviceContext, T,
    typename std::enable_if<!std::is_floating_point<T>::value>::type> {
  void operator()(const framework::ExecutionContext &ctx,
                  const framework::Tensor *x, const framework::Tensor *y,
                  framework::Tensor *z) {
    auto eigen_x = framework::EigenVector<T>::Flatten(*x);
    auto eigen_y = framework::EigenVector<T>::Flatten(*y);
    auto eigen_z = framework::EigenVector<T>::Flatten(*z);
    auto &place = *ctx.template device_context<platform::CPUDeviceContext>()
                       .eigen_device();
    eigen_z.device(place) = eigen_x + eigen_y;
  }
};

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
class ElementwiseAddOpMaker : public ElementwiseOpMaker {
 protected:
  std::string GetName() const override { return "Add"; }
  std::string GetEquation() const override { return "Out = X + Y"; }

  void AddInputX() override {
    AddInput("X",
             "(Variable), Tensor or LoDTensor of any dimensions. Its dtype "
             "should be int32, int64, float32, float64.");
  }

  void AddInputY() override {
    AddInput("Y",
             "(Variable), Tensor or LoDTensor of any dimensions. Its dtype "
             "should be int32, int64, float32, float64.");
  }

  std::string GetOpFuntionality() const override {
    return "Add two tensors element-wise";
  }
};

H
hong 已提交
94 95
template <typename T>
class ElementwiseAddDoubleGradMaker : public framework::SingleGradOpMaker<T> {
96
 public:
H
hong 已提交
97
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
98 99

 protected:
100
  void Apply(GradOpPtr<T> op) const override {
101
    op->SetType("elementwise_add_grad_grad");
H
hong 已提交
102 103 104 105
    op->SetInput("Y", this->Input("Y"));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetInput("DDY", this->OutputGrad(framework::GradVarName("Y")));
106

H
hong 已提交
107
    op->SetAttrMap(this->Attrs());
108

H
hong 已提交
109
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
110 111 112
  }
};

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
template <typename T>
class ElementwiseAddTripleGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("elementwise_add_triple_grad");
    op->SetInput("DDX", this->Input("DDX"));
    op->SetInput("DDY", this->Input("DDY"));
    op->SetInput("D_DDOut", this->OutputGrad("DDOut"));

    op->SetAttrMap(this->Attrs());

    op->SetOutput("D_DDX", this->InputGrad("DDX"));
    op->SetOutput("D_DDY", this->InputGrad("DDY"));
  }
};

132 133 134
}  // namespace operators
}  // namespace paddle

135
REGISTER_ELEMWISE_GRAD_MAKER(elementwise_add, Add);
136
REGISTER_ELEMWISE_EXPLICIT_OP_WITHOUT_GRAD(elementwise_add, Add);
137 138

namespace ops = paddle::operators;
H
hong 已提交
139
REGISTER_OPERATOR(
140 141
    elementwise_add_grad, ops::ElementwiseOpGrad,
    ops::ElementwiseGradOpInplaceInferer, ops::ElementwiseGradNoBufVarsInferer,
H
hong 已提交
142 143
    ops::ElementwiseAddDoubleGradMaker<paddle::framework::OpDesc>,
    ops::ElementwiseAddDoubleGradMaker<paddle::imperative::OpBase>);
144

145 146 147 148 149 150 151 152 153 154
REGISTER_OPERATOR(
    elementwise_add_grad_grad, ops::ElementwiseOpDoubleGradWithoutDXDY,
    ops::ElementwiseDoubleGradOpInplaceInferer,
    ops::ElementwiseDoubleGradNoBufVarsInferer,
    ops::ElementwiseAddTripleGradMaker<paddle::framework::OpDesc>,
    ops::ElementwiseAddTripleGradMaker<paddle::imperative::OpBase>);

REGISTER_OPERATOR(elementwise_add_triple_grad, ops::ElementwiseOpTripleGrad,
                  ops::ElementwiseTripleGradOpInplaceInferer,
                  ops::ElementwiseTripleGradNoBufVarsInferer);
D
dzhwinter 已提交
155

G
gongweibao 已提交
156 157
REGISTER_OP_CPU_KERNEL(
    elementwise_add,
Q
QI JUN 已提交
158 159 160
    ops::ElementwiseAddKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ElementwiseAddKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ElementwiseAddKernel<paddle::platform::CPUDeviceContext, int>,
161 162
    ops::ElementwiseAddKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::ElementwiseAddKernel<paddle::platform::CPUDeviceContext,
163
                              paddle::platform::complex<float>>,
164
    ops::ElementwiseAddKernel<paddle::platform::CPUDeviceContext,
165
                              paddle::platform::complex<double>>);
G
gongweibao 已提交
166 167
REGISTER_OP_CPU_KERNEL(
    elementwise_add_grad,
Q
QI JUN 已提交
168 169 170
    ops::ElementwiseAddGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ElementwiseAddGradKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ElementwiseAddGradKernel<paddle::platform::CPUDeviceContext, int>,
171 172
    ops::ElementwiseAddGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::ElementwiseAddGradKernel<paddle::platform::CPUDeviceContext,
173
                                  paddle::platform::complex<float>>,
174
    ops::ElementwiseAddGradKernel<paddle::platform::CPUDeviceContext,
175
                                  paddle::platform::complex<double>>);
176 177 178 179 180 181 182 183 184
REGISTER_OP_CPU_KERNEL(
    elementwise_add_grad_grad,
    ops::ElementwiseAddDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        float>,
    ops::ElementwiseAddDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        double>,
    ops::ElementwiseAddDoubleGradKernel<paddle::platform::CPUDeviceContext,
                                        int>,
    ops::ElementwiseAddDoubleGradKernel<paddle::platform::CPUDeviceContext,
185 186
                                        int64_t>,
    ops::ElementwiseAddDoubleGradKernel<paddle::platform::CPUDeviceContext,
187
                                        paddle::platform::complex<float>>,
188
    ops::ElementwiseAddDoubleGradKernel<paddle::platform::CPUDeviceContext,
189
                                        paddle::platform::complex<double>>);
190 191 192 193 194 195 196 197 198 199 200 201 202 203
REGISTER_OP_CPU_KERNEL(
    elementwise_add_triple_grad,
    ops::ElementwiseAddTripleGradKernel<paddle::platform::CPUDeviceContext,
                                        float>,
    ops::ElementwiseAddTripleGradKernel<paddle::platform::CPUDeviceContext,
                                        double>,
    ops::ElementwiseAddTripleGradKernel<paddle::platform::CPUDeviceContext,
                                        int>,
    ops::ElementwiseAddTripleGradKernel<paddle::platform::CPUDeviceContext,
                                        int64_t>,
    ops::ElementwiseAddTripleGradKernel<paddle::platform::CPUDeviceContext,
                                        paddle::platform::complex<float>>,
    ops::ElementwiseAddTripleGradKernel<paddle::platform::CPUDeviceContext,
                                        paddle::platform::complex<double>>);
204 205 206 207 208 209 210 211 212 213 214 215 216 217

// A specialization elementwise_add operator, used in gradient accumulation with
// inplace addto.
REGISTER_OPERATOR(
    grad_add, paddle::operators::ElementwiseOp,
    paddle::operators::ElementwiseAddOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);

REGISTER_OP_CPU_KERNEL(
    grad_add,
    ops::ElementwiseAddKernel<paddle::platform::CPUDeviceContext, float>,
    ops::ElementwiseAddKernel<paddle::platform::CPUDeviceContext, double>,
    ops::ElementwiseAddKernel<paddle::platform::CPUDeviceContext, int>,
218 219
    ops::ElementwiseAddKernel<paddle::platform::CPUDeviceContext, int64_t>,
    ops::ElementwiseAddKernel<paddle::platform::CPUDeviceContext,
220
                              paddle::platform::complex<float>>,
221
    ops::ElementwiseAddKernel<paddle::platform::CPUDeviceContext,
222
                              paddle::platform::complex<double>>);
223 224 225 226 227 228 229 230 231 232

REGISTER_OP_VERSION(elementwise_add)
    .AddCheckpoint(
        R"ROC(Register elementwise_add for adding the attribute of
       Scale_y)ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "Scale_y",
            "In order to support the function of scaling the input Y when "
            "using the operator of elementwise_add.",
            1.0f));