gradient_checker.py 10.9 KB
Newer Older
1 2 3
import unittest

import numpy
4
import itertools
Y
Yu Yang 已提交
5
import paddle.v2.framework.core as core
Y
Yu Yang 已提交
6
from paddle.v2.framework.op import Operator
Y
Yu Yang 已提交
7

Y
Yu Yang 已提交
8 9
__all__ = ['get_numeric_gradient']

Y
Yu Yang 已提交
10

11
def create_op(op_type):
12
    # TODO need to set attrs
13 14 15 16 17 18 19 20 21 22 23 24 25
    kwargs = dict()
    for in_name in Operator.get_op_input_names(op_type):
        kwargs[in_name] = in_name
    for out_name in Operator.get_op_output_names(op_type):
        kwargs[out_name] = out_name

    return Operator(op_type, **kwargs)


def grad_var_name(var_name):
    return var_name + "@GRAD"


Y
Yu Yang 已提交
26 27 28 29
def get_numeric_gradient(op,
                         input_values,
                         output_name,
                         input_to_check,
30
                         delta=0.005,
Y
Yu Yang 已提交
31
                         local_scope=None):
Y
Yu Yang 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45
    """
    Get Numeric Gradient for an operator's input.
    
    :param op: C++ operator instance, could be an network 
    :param input_values: The input variables. Should be an dictionary, key is 
    variable name. Value is numpy array.
    :param output_name: The final output variable name. 
    :param input_to_check: The input variable need to get gradient.
    :param delta: The perturbation value for numeric gradient method. The 
    smaller delta is, the more accurate result will get. But if that delta is
     too small, it could occur numerical stability problem.
    :param local_scope: The local scope used for get_numeric_gradient.
    :return: The gradient array in numpy format.
    """
Y
Yu Yang 已提交
46 47
    if local_scope is None:
        local_scope = core.Scope()
Y
Yu Yang 已提交
48 49

    # Create all input variable in local_scope
Y
Yu Yang 已提交
50 51 52 53
    for var_name in input_values:
        var = local_scope.new_var(var_name)
        tensor = var.get_tensor()
        tensor.set_dims(input_values[var_name].shape)
Y
Yu Yang 已提交
54 55
        tensor.alloc_float(core.CPUPlace())
        tensor.set(input_values[var_name], core.CPUPlace())
Y
Yu Yang 已提交
56

Y
Yu Yang 已提交
57
    # Create all output variable in local_scope
Y
Yu Yang 已提交
58 59 60 61 62
    opts = op.outputs()
    for key in opts:
        for output in opts[key]:
            if local_scope.find_var(output) is None:
                local_scope.new_var(output).get_tensor()
Y
Yu Yang 已提交
63 64
    op.infer_shape(local_scope)

Y
Yu Yang 已提交
65
    # allocate output memory
Y
Yu Yang 已提交
66 67 68 69
    for key in opts:
        for output in opts[key]:
            local_scope.find_var(output).get_tensor().alloc_float(core.CPUPlace(
            ))
Y
Yu Yang 已提交
70

Y
Yu Yang 已提交
71
    cpu_ctx = core.DeviceContext.create(core.CPUPlace())
Y
Yu Yang 已提交
72 73 74 75 76 77 78 79

    def get_output():
        op.run(local_scope, cpu_ctx)
        return numpy.array(local_scope.find_var(output_name).get_tensor()).sum()

    def product(dim):
        return reduce(lambda a, b: a * b, dim, 1)

Q
qiaolongfei 已提交
80
    # get the input tensor that we want to get it's numeric gradient.
Y
Yu Yang 已提交
81 82
    tensor_to_check = local_scope.find_var(input_to_check).get_tensor()
    tensor_size = product(tensor_to_check.get_dims())
Q
qiaolongfei 已提交
83
    # prepare a numpy array to store the gradient.
Y
Yu Yang 已提交
84
    gradient_flat = numpy.zeros(shape=(tensor_size, ), dtype='float32')
Q
qiaolongfei 已提交
85 86 87

    # we only compute gradient of one element each time.
    # we use a for loop to compute the gradient of every element.
Y
Yu Yang 已提交
88
    for i in xrange(tensor_size):
Q
qiaolongfei 已提交
89
        # get one input element throw it's index i.
Y
Yu Yang 已提交
90
        origin = tensor_to_check.get_float_element(i)
Q
qiaolongfei 已提交
91 92

        # add delta to it, run op and then get the sum of the result tensor.
Y
Yu Yang 已提交
93 94 95 96
        x_pos = origin + delta
        tensor_to_check.set_float_element(i, x_pos)
        y_pos = get_output()

Q
qiaolongfei 已提交
97
        # plus delta to this element, run op and get the sum of the result tensor.
Y
Yu Yang 已提交
98 99 100 101
        x_neg = origin - delta
        tensor_to_check.set_float_element(i, x_neg)
        y_neg = get_output()

Q
qiaolongfei 已提交
102 103 104 105
        # restore old value
        tensor_to_check.set_float_element(i, origin)

        # compute the gradient of this element and store it into a numpy array.
Y
Yu Yang 已提交
106
        gradient_flat[i] = (y_pos - y_neg) / delta / 2
Q
qiaolongfei 已提交
107 108

    # reshape the gradient result to the shape of the source tensor.
Y
Yu Yang 已提交
109 110 111
    return gradient_flat.reshape(tensor_to_check.get_dims())


112
class GradientChecker(unittest.TestCase):
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
    def __get_gradient(self, forward_op, backward_op, input_value, grad_names,
                       place):
        """Get the input gradients after running forward and backward operators
        on the given places.

        :param forward_op: forward operator
        :type forward_op: Operator
        :param backward_op: backward operator
        :type backward_op: Operator
        :param input_value: input values.
        :type input_value: dict{string:numpy.array}
        :param grad_names: the names of returned input gradients.
        :type input_value: a list of string
        :param place: the device type.
        :type place: CPUPlace or GPUPlace
        :return: the input grdients of given grad_names.
        :rtype: a list of numpy.array
        """
131 132
        scope = core.Scope()
        ctx = core.DeviceContext.create(place)
133

134 135 136 137 138 139
        inputs = forward_op.inputs()
        in_names = [item for k in inputs for item in inputs[k]]
        outputs = forward_op.outputs()
        out_names = [item for k in outputs for item in outputs[k]]

        # create input var and set value
140
        for name, value in input_value.iteritems():
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
            if name not in in_names:
                raise ValueError(name + "does not exist in Op's inputs.")
            var = scope.new_var(name).get_tensor()
            var.set_dims(value.shape)
            var.set(value, place)

        # run forward op
        for out_name in out_names:
            scope.new_var(out_name)
        forward_op.infer_shape(scope)
        forward_op.run(scope, ctx)

        # set output var's shape
        # set output grad to ones
        for name in out_names:
            out_tensor = scope.find_var(name).get_tensor()
            grad_tensor = scope.new_var(grad_var_name(name)).get_tensor()
            grad_tensor.set_dims(out_tensor.shape())
            data = numpy.ones(out_tensor.shape(), dtype=numpy.float32)
            grad_tensor.set(data, place)

        # run backward op
        for name in backward_op.outputs():
            scope.new_var(name)
        backward_op.infer_shape(scope)
        backward_op.run(scope, ctx)

        outs = [
            numpy.array(scope.find_var(name).get_tensor())
            for name in grad_names
        ]
        return outs

174 175 176 177 178 179 180 181 182 183
    def compare_grad(self, forward_op, input_value):
        """ Compare the input gradients between CPU and GPU for the given forward
        operator.

        :param forward_op: forward operator
        :type forward_op: Operator
        :param input_value: input values.
        :type input_value: dict{string:numpy.array}
        :raises: AssertionError, there is different gradient value.
        """
184
        backward_op = core.Operator.backward(forward_op, set())
D
dangqingqing 已提交
185
        # return if not compile with GPU or not implementing GPU kernel
186 187 188 189 190
        if not (core.is_compile_gpu() and backward_op.support_gpu()):
            return

        outputs = backward_op.outputs()
        out_names = [item for k in outputs for item in outputs[k]]
191 192 193 194
        cpu_grads = self.__get_gradient(forward_op, backward_op, input_value,
                                        out_names, core.CPUPlace())
        gpu_grads = self.__get_gradient(forward_op, backward_op, input_value,
                                        out_names, core.GPUPlace(0))
195 196 197 198

        for c_grad, g_grad, name in itertools.izip(cpu_grads, gpu_grads,
                                                   out_names):
            self.assertTrue(
199 200
                numpy.allclose(
                    c_grad, g_grad, atol=1e-4),
201 202
                "output name: " + name + " has diff")

203 204 205 206 207 208 209 210 211 212 213 214 215
    def __assert_is_close(self, numeric_grads, analytic_grads, names,
                          max_relative_error, msg_prefix):
        """Use relative error for the comparison.

        :param numeric_grads: the numerical graidents.
        :type numeric_grads: a list of numpy.array 
        :param analytic_grads: the analytical graidents.
        :type analytic_grads: a list of numpy.array 
        :param name: the names of gradients, used to print for debug.
        :type names: a list of string
        :param msg_prefix: string info, used to print for debug.
        :type msf_prefix: string
        """
216
        for a, b, name in itertools.izip(numeric_grads, analytic_grads, names):
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
            abs_a = numpy.abs(a)
            # if abs_a is nearly zero, then use abs error for a, not relative
            # error.
            abs_a[abs_a < 1e-3] = 1

            diff_mat = numpy.abs(a - b) / abs_a
            max_diff = numpy.max(diff_mat)

            def err_msg():
                offset = numpy.argmax(diff_mat > max_relative_error)
                return "%s Variable %s max gradient diff %f over limit %f, the first " \
                       "error element is %d" % (
                       msg_prefix, name, max_diff, max_relative_error, offset)

            self.assertLessEqual(max_diff, max_relative_error, err_msg())
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254

    def check_grad(self,
                   forward_op,
                   input_vars,
                   inputs_to_check,
                   output_name,
                   no_grad_set=None,
                   only_cpu=False,
                   max_relative_error=0.005):
        """
        :param forward_op: used to create backward_op
        :param input_vars: numpy value of input variable. The following
            computation will use these variables.
        :param inputs_to_check: inputs var names that should check gradient.
        :param output_name: output name that used to
        :param max_relative_error: The relative tolerance parameter.
        :param no_grad_set: used when create backward ops
        :param only_cpu: only compute and check gradient on cpu kernel.
        :return:
        """
        if no_grad_set is None:
            no_grad_set = set()

Y
Yu Yang 已提交
255
        no_tmp_out = forward_op.no_intermediate_outputs()
256 257 258
        if len(no_tmp_out) != 1:
            raise ValueError("non temp out_names should be 1")

Y
Yu Yang 已提交
259 260
        inputs = forward_op.inputs()
        in_names = [item for k in inputs for item in inputs[k]]
261 262 263 264 265 266 267 268 269 270
        for no_grad in no_grad_set:
            if no_grad not in in_names:
                raise ValueError("no_grad should be in in_names")

        backward_op = core.Operator.backward(forward_op, no_grad_set)

        places = [core.CPUPlace()]
        if not only_cpu and core.is_compile_gpu() and backward_op.support_gpu():
            places.append(core.GPUPlace(0))

271 272 273 274 275
        # get numerical gradients
        numeric_grads = [
            get_numeric_gradient(forward_op, input_vars, output_name, name)
            for name in inputs_to_check
        ]
276

277
        check_names = [grad_var_name(name) for name in inputs_to_check]
278
        for place in places:
279
            # get analytical gradients according to different device
280 281
            analytic_grads = self.__get_gradient(forward_op, backward_op,
                                                 input_vars, check_names, place)
282 283 284
            self.__assert_is_close(numeric_grads, analytic_grads, check_names,
                                   max_relative_error,
                                   "Gradient Check On %s" % str(place))