tril_triu_op.h 3.4 KB
Newer Older
W
WuHaobo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "paddle/fluid/framework/op_registry.h"
18
#include "paddle/fluid/platform/float16.h"
W
WuHaobo 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
#include "paddle/fluid/platform/for_range.h"

namespace paddle {
namespace operators {

template <typename T>
class TrilTriuCompute {
 public:
  HOSTDEVICE TrilTriuCompute(const T* in, const int diagonal, const bool lower,
                             const int64_t H, const int64_t W, T* out)
      : in_(in), diagonal_(diagonal), lower_(lower), H_(H), W_(W), out_(out) {}

  HOSTDEVICE void operator()(int64_t idx) {
    const int64_t row = (idx / W_) % H_;
    const int64_t col = idx % W_;
    const bool mask =
        lower_ ? (col - row > diagonal_) : (col - row < diagonal_);
    out_[idx] = mask ? static_cast<T>(0) : in_[idx];
  }

 private:
  const T* in_;
  const int diagonal_;
  const bool lower_;
  const int64_t H_;
  const int64_t W_;
  T* out_;
};

template <typename DeviceContext, typename T>
class TrilTriuOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const auto* x = context.Input<framework::Tensor>("X");
    const auto* x_data = x->data<T>();
    auto* out = context.Output<framework::Tensor>("Out");
    auto* out_data = out->mutable_data<T>(context.GetPlace());

    const int diagonal = context.Attr<int>("diagonal");
    const bool lower = context.Attr<bool>("lower");

    const auto& dims = x->dims();
    const auto H = dims[dims.size() - 2];
    const auto W = dims[dims.size() - 1];

    platform::ForRange<DeviceContext> for_range(
        context.template device_context<DeviceContext>(),
        static_cast<size_t>(x->numel()));

    paddle::operators::TrilTriuCompute<T> tril_triu_computer(
        x_data, diagonal, lower, H, W, out_data);
    for_range(tril_triu_computer);
  }
};

template <typename DeviceContext, typename T>
class TrilTriuGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const auto* d_out =
        context.Input<framework::Tensor>(framework::GradVarName("Out"));
    const auto* dout_data = d_out->data<T>();
    auto* d_x = context.Output<framework::Tensor>(framework::GradVarName("X"));
    auto* dx_data = d_x->mutable_data<T>(context.GetPlace());

    const int diagonal = context.Attr<int>("diagonal");
    const bool lower = context.Attr<bool>("lower");

    const auto& dims = d_out->dims();
    const auto H = dims[dims.size() - 2];
    const auto W = dims[dims.size() - 1];

    platform::ForRange<DeviceContext> for_range(
        context.template device_context<DeviceContext>(),
        static_cast<size_t>(d_out->numel()));

    paddle::operators::TrilTriuCompute<T> tril_triu_grad_computer(
        dout_data, diagonal, lower, H, W, dx_data);
    for_range(tril_triu_grad_computer);
  }
};

}  // namespace operators
}  // namespace paddle