PriorBox.cpp 5.5 KB
Newer Older
G
gaoyuan 已提交
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Y
yuan 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "Layer.h"
#include "paddle/math/BaseMatrix.h"
G
gaoyuan 已提交
17
#include "paddle/math/Matrix.h"
Y
yuan 已提交
18 19

namespace paddle {
G
gaoyuan 已提交
20
/**
21
 * @brief A layer for generating priorbox locations and variances.
G
gaoyuan 已提交
22 23
 * - Input: Two and only two input layer are accepted. The input layer must be
 *        be a data output layer and a convolution output layer.
24
 * - Output: The priorbox locations and variances of the input data.
G
gaoyuan 已提交
25 26 27 28
 * Reference:
 *    Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
 *    Cheng-Yang Fu, Alexander C. Berg. SSD: Single Shot MultiBox Detector
 */
Y
yuan 已提交
29 30 31 32

class PriorBoxLayer : public Layer {
public:
  explicit PriorBoxLayer(const LayerConfig& config) : Layer(config) {}
Y
Yu Yang 已提交
33 34
  bool init(const LayerMap& layerMap,
            const ParameterMap& parameterMap) override;
35

Y
Yu Yang 已提交
36 37
  void forward(PassType passType) override;
  void backward(const UpdateCallback& callback) override {}
38 39

protected:
Y
yuan 已提交
40 41 42
  int numPriors_;
  std::vector<int> minSize_;
  std::vector<int> maxSize_;
G
gaoyuan 已提交
43 44
  std::vector<real> aspectRatio_;
  std::vector<real> variance_;
Y
yuan 已提交
45 46 47 48
  MatrixPtr buffer_;
};

bool PriorBoxLayer::init(const LayerMap& layerMap,
G
gaoyuan 已提交
49
                         const ParameterMap& parameterMap) {
Y
yuan 已提交
50
  Layer::init(layerMap, parameterMap);
G
gaoyuan 已提交
51 52 53
  auto pbConf = config_.inputs(0).priorbox_conf();
  std::copy(pbConf.min_size().begin(),
            pbConf.min_size().end(),
Y
yuan 已提交
54
            std::back_inserter(minSize_));
G
gaoyuan 已提交
55 56
  std::copy(pbConf.max_size().begin(),
            pbConf.max_size().end(),
Y
yuan 已提交
57
            std::back_inserter(maxSize_));
G
gaoyuan 已提交
58 59
  std::copy(pbConf.aspect_ratio().begin(),
            pbConf.aspect_ratio().end(),
Y
yuan 已提交
60
            std::back_inserter(aspectRatio_));
G
gaoyuan 已提交
61 62
  std::copy(pbConf.variance().begin(),
            pbConf.variance().end(),
Y
yuan 已提交
63 64
            std::back_inserter(variance_));
  // flip
G
gaoyuan 已提交
65 66
  int inputRatioLength = aspectRatio_.size();
  for (int index = 0; index < inputRatioLength; index++)
G
gaoyuan 已提交
67
    aspectRatio_.push_back(1 / aspectRatio_[index]);
Y
yuan 已提交
68 69
  aspectRatio_.push_back(1.);
  numPriors_ = aspectRatio_.size();
G
gaoyuan 已提交
70
  if (maxSize_.size() > 0) numPriors_++;
Y
yuan 已提交
71 72 73 74 75
  return true;
}

void PriorBoxLayer::forward(PassType passType) {
  Layer::forward(passType);
G
gaoyuan 已提交
76 77 78
  auto input = getInput(0);
  int layerWidth = input.getFrameWidth();
  int layerHeight = input.getFrameHeight();
Y
yuan 已提交
79

G
gaoyuan 已提交
80 81 82
  auto image = getInput(1);
  int imageWidth = image.getFrameWidth();
  int imageHeight = image.getFrameHeight();
G
gaoyuan 已提交
83

G
gaoyuan 已提交
84 85
  real stepW = static_cast<real>(imageWidth) / layerWidth;
  real stepH = static_cast<real>(imageHeight) / layerHeight;
G
gaoyuan 已提交
86
  int dim = layerHeight * layerWidth * numPriors_ * 4;
Y
yuan 已提交
87 88 89
  reserveOutput(1, dim * 2);
  // use a cpu buffer to compute
  Matrix::resizeOrCreate(buffer_, 1, dim * 2, false, false);
G
gaoyuan 已提交
90
  auto* tmpPtr = buffer_->getData();
Y
yuan 已提交
91 92

  int idx = 0;
G
gaoyuan 已提交
93 94
  for (int h = 0; h < layerHeight; ++h) {
    for (int w = 0; w < layerWidth; ++w) {
G
gaoyuan 已提交
95 96
      real centerX = (w + 0.5) * stepW;
      real centerY = (h + 0.5) * stepH;
G
gaoyuan 已提交
97
      int minSize = 0;
Y
yuan 已提交
98 99
      for (size_t s = 0; s < minSize_.size(); s++) {
        // first prior.
G
gaoyuan 已提交
100 101 102
        minSize = minSize_[s];
        int boxWidth = minSize;
        int boxHeight = minSize;
Y
yuan 已提交
103
        // xmin, ymin, xmax, ymax.
G
gaoyuan 已提交
104 105 106 107
        tmpPtr[idx++] = (centerX - boxWidth / 2.) / imageWidth;
        tmpPtr[idx++] = (centerY - boxHeight / 2.) / imageHeight;
        tmpPtr[idx++] = (centerX + boxWidth / 2.) / imageWidth;
        tmpPtr[idx++] = (centerY + boxHeight / 2.) / imageHeight;
G
gaoyuan 已提交
108 109
        // set the variance.
        for (int t = 0; t < 4; t++) tmpPtr[idx++] = variance_[t];
Y
yuan 已提交
110 111 112 113 114

        if (maxSize_.size() > 0) {
          CHECK_EQ(minSize_.size(), maxSize_.size());
          // second prior.
          for (size_t s = 0; s < maxSize_.size(); s++) {
G
gaoyuan 已提交
115 116 117 118 119 120
            int maxSize = maxSize_[s];
            boxWidth = boxHeight = sqrt(minSize * maxSize);
            tmpPtr[idx++] = (centerX - boxWidth / 2.) / imageWidth;
            tmpPtr[idx++] = (centerY - boxHeight / 2.) / imageHeight;
            tmpPtr[idx++] = (centerX + boxWidth / 2.) / imageWidth;
            tmpPtr[idx++] = (centerY + boxHeight / 2.) / imageHeight;
G
gaoyuan 已提交
121 122
            // set the variance.
            for (int t = 0; t < 4; t++) tmpPtr[idx++] = variance_[t];
Y
yuan 已提交
123 124 125 126 127
          }
        }
      }
      // rest of priors.
      for (size_t r = 0; r < aspectRatio_.size(); r++) {
G
gaoyuan 已提交
128
        real ar = aspectRatio_[r];
G
gaoyuan 已提交
129
        if (fabs(ar - 1.) < 1e-6) continue;
G
gaoyuan 已提交
130 131
        real boxWidth = minSize * sqrt(ar);
        real boxHeight = minSize / sqrt(ar);
G
gaoyuan 已提交
132 133 134 135
        tmpPtr[idx++] = (centerX - boxWidth / 2.) / imageWidth;
        tmpPtr[idx++] = (centerY - boxHeight / 2.) / imageHeight;
        tmpPtr[idx++] = (centerX + boxWidth / 2.) / imageWidth;
        tmpPtr[idx++] = (centerY + boxHeight / 2.) / imageHeight;
G
gaoyuan 已提交
136 137
        // set the variance.
        for (int t = 0; t < 4; t++) tmpPtr[idx++] = variance_[t];
Y
yuan 已提交
138 139 140 141
      }
    }
  }
  // clip the prior's coordidate such that it is within [0, 1]
G
gaoyuan 已提交
142 143
  for (int d = 0; d < dim * 2; ++d)
    if ((d % 8) < 4)
G
gaoyuan 已提交
144
      tmpPtr[d] = std::min(std::max(tmpPtr[d], (real)0.), (real)1.);
Y
yuan 已提交
145 146 147 148 149 150
  MatrixPtr outV = getOutputValue();
  outV->copyFrom(buffer_->data_, dim * 2);
}
REGISTER_LAYER(priorbox, PriorBoxLayer);

}  // namespace paddle