gpu_info.cc 8.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
liaogang 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/platform/gpu_info.h"
L
liaogang 已提交
16

17
#include <algorithm>
S
sneaxiy 已提交
18 19
#include <cstdlib>
#include <string>
L
liaogang 已提交
20

21
#include "gflags/gflags.h"
Y
Yi Wang 已提交
22
#include "paddle/fluid/platform/enforce.h"
23
#include "paddle/fluid/string/split.h"
L
liaogang 已提交
24

25
#ifndef _WIN32
P
peizhilin 已提交
26
constexpr static float fraction_of_gpu_memory_to_use = 0.92f;
27
#else
P
peizhilin 已提交
28 29 30
// fraction_of_gpu_memory_to_use cannot be too high on windows,
// since the win32 graphic sub-system can occupy some GPU memory
// which may lead to insufficient memory left for paddle
P
peizhilin 已提交
31
constexpr static float fraction_of_gpu_memory_to_use = 0.5f;
32 33 34
#endif

DEFINE_double(fraction_of_gpu_memory_to_use, fraction_of_gpu_memory_to_use,
X
Xin Pan 已提交
35 36 37 38 39
              "Allocate a trunk of gpu memory that is this fraction of the "
              "total gpu memory size. Future memory usage will be allocated "
              "from the trunk. If the trunk doesn't have enough gpu memory, "
              "additional trunks of the same size will be requested from gpu "
              "until the gpu has no memory left for another trunk.");
L
liaogang 已提交
40

41 42 43 44 45 46 47 48 49 50
DEFINE_bool(
    enable_cublas_tensor_op_math, false,
    "The enable_cublas_tensor_op_math indicate whether to use Tensor Core, "
    "but it may loss precision. Currently, There are two CUDA libraries that"
    " use Tensor Cores, cuBLAS and cuDNN. cuBLAS uses Tensor Cores to speed up"
    " GEMM computations(the matrices must be either half precision or single "
    "precision); cuDNN uses Tensor Cores to speed up both convolutions(the "
    "input and output must be half precision) and recurrent neural networks "
    "(RNNs).");

51 52 53 54 55 56 57 58 59
DEFINE_string(selected_gpus, "",
              "A list of device ids separated by comma, like: 0,1,2,3. "
              "This option is useful when doing multi process training and "
              "each process have only one device (GPU). If you want to use "
              "all visible devices, set this to empty string. NOTE: the "
              "reason of doing this is that we want to use P2P communication"
              "between GPU devices, use CUDA_VISIBLE_DEVICES can only use"
              "share-memory only.");

L
liaogang 已提交
60 61 62
namespace paddle {
namespace platform {

S
sneaxiy 已提交
63 64 65 66 67 68 69 70 71 72 73
static int GetCUDADeviceCountImpl() {
  const auto *cuda_visible_devices = std::getenv("CUDA_VISIBLE_DEVICES");
  if (cuda_visible_devices != nullptr) {
    std::string cuda_visible_devices_str(cuda_visible_devices);
    if (std::all_of(cuda_visible_devices_str.begin(),
                    cuda_visible_devices_str.end(),
                    [](char ch) { return ch == ' '; })) {
      return 0;
    }
  }

L
liaogang 已提交
74
  int count;
L
liaogang 已提交
75
  PADDLE_ENFORCE(
L
liaogang 已提交
76
      cudaGetDeviceCount(&count),
77
      "cudaGetDeviceCount failed in paddle::platform::GetCUDADeviceCount");
L
liaogang 已提交
78 79 80
  return count;
}

S
sneaxiy 已提交
81 82 83 84 85
int GetCUDADeviceCount() {
  static auto dev_cnt = GetCUDADeviceCountImpl();
  return dev_cnt;
}

86 87 88 89 90 91 92 93 94
int GetCUDAComputeCapability(int id) {
  PADDLE_ENFORCE_LT(id, GetCUDADeviceCount(), "id must less than GPU count");
  cudaDeviceProp device_prop;
  PADDLE_ENFORCE(cudaGetDeviceProperties(&device_prop, id),
                 "cudaGetDeviceProperties failed in "
                 "paddle::platform::GetCUDAComputeCapability");
  return device_prop.major * 10 + device_prop.minor;
}

C
chengduo 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
int GetCUDARuntimeVersion(int id) {
  PADDLE_ENFORCE_LT(id, GetCUDADeviceCount(), "id must less than GPU count");
  int runtime_version = 0;
  PADDLE_ENFORCE(cudaRuntimeGetVersion(&runtime_version),
                 "cudaRuntimeGetVersion failed in "
                 "paddle::platform::cudaRuntimeGetVersion");
  return runtime_version;
}

int GetCUDADriverVersion(int id) {
  PADDLE_ENFORCE_LT(id, GetCUDADeviceCount(), "id must less than GPU count");
  int driver_version = 0;
  PADDLE_ENFORCE(cudaDriverGetVersion(&driver_version),
                 "cudaDriverGetVersion failed in "
                 "paddle::platform::GetCUDADriverVersion");
  return driver_version;
}

113 114 115 116 117 118 119 120 121 122
bool TensorCoreAvailable() {
#if CUDA_VERSION >= 9000
  int device = GetCurrentDeviceId();
  int driver_version = GetCUDAComputeCapability(device);
  return driver_version >= 70;
#else
  return false;
#endif
}

C
chengduoZH 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
int GetCUDAMultiProcessors(int id) {
  PADDLE_ENFORCE_LT(id, GetCUDADeviceCount(), "id must less than GPU count");
  int count;
  PADDLE_ENFORCE(
      cudaDeviceGetAttribute(&count, cudaDevAttrMultiProcessorCount, id),
      "cudaDeviceGetAttribute failed in "
      "paddle::platform::GetCUDAMultiProcessors");
  return count;
}

int GetCUDAMaxThreadsPerMultiProcessor(int id) {
  PADDLE_ENFORCE_LT(id, GetCUDADeviceCount(), "id must less than GPU count");
  int count;
  PADDLE_ENFORCE(cudaDeviceGetAttribute(
                     &count, cudaDevAttrMaxThreadsPerMultiProcessor, id),
                 "cudaDeviceGetAttribute failed in "
                 "paddle::platform::GetCUDAMaxThreadsPerMultiProcessor");
  return count;
}

L
liaogang 已提交
143 144
int GetCurrentDeviceId() {
  int device_id;
L
liaogang 已提交
145
  PADDLE_ENFORCE(
L
liaogang 已提交
146 147 148 149 150
      cudaGetDevice(&device_id),
      "cudaGetDevice failed in paddle::platform::GetCurrentDeviceId");
  return device_id;
}

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
//! Get a list of device ids from environment variable or use all.
std::vector<int> GetSelectedDevices() {
  // use user specified GPUs in single-node multi-process mode.
  std::vector<int> devices;
  if (!FLAGS_selected_gpus.empty()) {
    auto devices_str = paddle::string::Split(FLAGS_selected_gpus, ',');
    for (auto id : devices_str) {
      devices.push_back(atoi(id.c_str()));
    }
  } else {
    int count = GetCUDADeviceCount();
    for (int i = 0; i < count; ++i) {
      devices.push_back(i);
    }
  }
  return devices;
}

L
liaogang 已提交
169
void SetDeviceId(int id) {
Q
qijun 已提交
170
  // TODO(qijun): find a better way to cache the cuda device count
Y
Yang Yang 已提交
171
  PADDLE_ENFORCE_LT(id, GetCUDADeviceCount(), "id must less than GPU count");
L
liaogang 已提交
172
  PADDLE_ENFORCE(cudaSetDevice(id),
L
liaogang 已提交
173 174 175
                 "cudaSetDevice failed in paddle::platform::SetDeviceId");
}

176 177
void GpuMemoryUsage(size_t *available, size_t *total) {
  PADDLE_ENFORCE(cudaMemGetInfo(available, total),
L
liaogang 已提交
178 179 180 181 182 183 184
                 "cudaMemGetInfo failed in paddle::platform::GetMemoryUsage");
}

size_t GpuMaxAllocSize() {
  size_t total = 0;
  size_t available = 0;

185
  GpuMemoryUsage(&available, &total);
L
liaogang 已提交
186

L
liaogang 已提交
187
  // Reserve the rest for page tables, etc.
L
liaogang 已提交
188
  return static_cast<size_t>(total * FLAGS_fraction_of_gpu_memory_to_use);
L
liaogang 已提交
189 190
}

L
liaogang 已提交
191 192 193 194 195 196 197
size_t GpuMinChunkSize() {
  // Allow to allocate the minimum chunk size is 256 bytes.
  return 1 << 8;
}

size_t GpuMaxChunkSize() {
  size_t total = 0;
C
chenweihang 已提交
198
  size_t available = 0;
L
liaogang 已提交
199

C
chenweihang 已提交
200
  GpuMemoryUsage(&available, &total);
M
minqiyang 已提交
201 202
  VLOG(10) << "GPU Usage " << available / 1024 / 1024 << "M/"
           << total / 1024 / 1024 << "M";
203
  size_t reserving = static_cast<size_t>(0.05 * total);
L
liaogang 已提交
204
  // If available less than minimum chunk size, no usable memory exists.
C
chenweihang 已提交
205 206 207
  available =
      std::min(std::max(available, GpuMinChunkSize()) - GpuMinChunkSize(),
               total - reserving);
208 209

  // Reserving the rest memory for page tables, etc.
L
liaogang 已提交
210

C
chenweihang 已提交
211 212
  size_t allocating = static_cast<size_t>(FLAGS_fraction_of_gpu_memory_to_use *
                                          (total - reserving));
L
liaogang 已提交
213

C
chenweihang 已提交
214 215
  PADDLE_ENFORCE_LE(allocating, available,
                    "Insufficient GPU memory to allocation.");
216

C
chenweihang 已提交
217
  return allocating;
L
liaogang 已提交
218 219
}

L
liaogang 已提交
220 221
void GpuMemcpyAsync(void *dst, const void *src, size_t count,
                    enum cudaMemcpyKind kind, cudaStream_t stream) {
L
liaogang 已提交
222 223
  PADDLE_ENFORCE(cudaMemcpyAsync(dst, src, count, kind, stream),
                 "cudaMemcpyAsync failed in paddle::platform::GpuMemcpyAsync");
L
liaogang 已提交
224 225
}

226 227 228 229 230 231 232 233
void GpuMemcpySync(void *dst, const void *src, size_t count,
                   enum cudaMemcpyKind kind) {
  PADDLE_ENFORCE(cudaMemcpy(dst, src, count, kind),
                 "cudaMemcpy failed in paddle::platform::GpuMemcpySync");
}

void GpuMemcpyPeerAsync(void *dst, int dst_device, const void *src,
                        int src_device, size_t count, cudaStream_t stream) {
L
liaogang 已提交
234
  PADDLE_ENFORCE(
L
liaogang 已提交
235
      cudaMemcpyPeerAsync(dst, dst_device, src, src_device, count, stream),
236 237 238 239 240 241 242 243
      "cudaMemcpyPeerAsync failed in paddle::platform::GpuMemcpyPeerAsync");
}

void GpuMemcpyPeerSync(void *dst, int dst_device, const void *src,
                       int src_device, size_t count) {
  PADDLE_ENFORCE(
      cudaMemcpyPeer(dst, dst_device, src, src_device, count),
      "cudaMemcpyPeer failed in paddle::platform::GpuMemcpyPeerSync");
L
liaogang 已提交
244
}
D
dzhwinter 已提交
245 246 247 248 249

void GpuMemsetAsync(void *dst, int value, size_t count, cudaStream_t stream) {
  PADDLE_ENFORCE(cudaMemsetAsync(dst, value, count, stream),
                 "cudaMemsetAsync failed in paddle::platform::GpuMemsetAsync");
}
L
liaogang 已提交
250 251
}  // namespace platform
}  // namespace paddle