multiary.py 3.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from paddle import _C_ops, _legacy_C_ops
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
from paddle.fluid.framework import dygraph_only

__all__ = []


@dygraph_only
def addmm(input, x, y, beta=1.0, alpha=1.0, name=None):
    """
    Note:    
        This API is only supported from ``CUDA 11.0`` .

    Applies matrix multiplication for `x` and `y` , `input` is added to
    the final result. The equation is:

    ..  math::

        Out = alpha * x * y + beta * input
    
    The supported input/output Tensor layout are as follows:
    
    Note:
        input[SparseCsrTensor] + x[SparseCsrTensor] @ y[SparseCsrTensor] -> out[SparseCsrTensor]
        input[DenseTensor] + x[SparseCsrTensor] @ y[DenseTensor] -> out[DenseTensor]
        input[SparseCooTensor] + x[SparseCooTensor] @ y[SparseCooTensor] -> out[SparseCooTensor]
        input[DenseTensor] + x[SparseCooTensor] @ y[DenseTensor] -> out[DenseTensor]

    It supports backward propagation.

    Dimensions `input` , `x` , `y` must be same and >= 2D. Automatic broadcasting of Tensor is not supported.

    Args:
        input (Tensor): The input tensor. Shape is [*, M, N]. The data type can be float32 or float64.
        x (Tensor): The input tensor. Shape is [*, M, K]. The data type can be float32 or float64.
        y (Tensor): The input tensor. Shape is [*, K, N]. The data type can be float32 or float64.
        beta (float, optional): Coefficient of `input` . Default: 1.0
        alpha (float, optional): Coefficient of `x * y` . Default: 1.0
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        Tensor: Its layout is determined by that of `x` and `y` . dtype and shape is the same with `input`
    
    Examples:

        .. code-block:: python

61
            # required: gpu
62 63 64 65 66 67 68
            import paddle

            # dense + csr @ dense -> dense
            input = paddle.rand([3, 2])
            crows = [0, 1, 2, 3]
            cols = [1, 2, 0]
            values = [1., 2., 3.]
69
            x = paddle.sparse.sparse_csr_tensor(crows, cols, values, [3, 3])
70
            y = paddle.rand([3, 2])
71
            out = paddle.sparse.addmm(input, x, y, 3.0, 2.0)
72 73 74 75 76

            # dense + coo @ dense -> dense
            input = paddle.rand([3, 2])
            indices = [[0, 1, 2], [1, 2, 0]]
            values = [1., 2., 3.]
77
            x = paddle.sparse.sparse_coo_tensor(indices, values, [3, 3])
78
            y = paddle.rand([3, 2])
79
            out = paddle.sparse.addmm(input, x, y, 3.0, 2.0)
80 81
            
    """
82
    return _C_ops.sparse_addmm(input, x, y, alpha, beta)