auto_checkpoint.py 20.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
import logging
import hashlib
import json
import os
import six
import time
import collections
from threading import Thread, current_thread
from contextlib import contextmanager

from paddle.fluid import unique_name, compiler
from .checkpoint_saver import SerializableBase, CheckpointSaver, PaddleModel
from paddle.fluid.framework import in_dygraph_mode, Program

g_train_epoch_range = None
g_checker = None

logger = None

generator = unique_name.UniqueNameGenerator()

CONST_CHECKPOINT = "checkpoint"
CONST_MEMORYINIT = "memory_init"

# auto checkpoint by dataloader event.
CONST_DACP_TYPE = "dacp"
# auto checkpoint by loop range.
CONST_ACP_TYPE = "acp"
g_acp_type = None
g_program_attr = {}  # program_name->can_be_auto_checkpoint


def _get_logger(log_level, name="auto_checkpoint"):
    global logger
    if logger != None:
        return logger

    logger = logging.getLogger(name)
    logger.setLevel(log_level)
    logger.propagate = False

    log_handler = logging.StreamHandler()
    log_format = logging.Formatter(
        '%(levelname)s %(asctime)s %(filename)s:%(lineno)d] %(message)s')
    log_handler.setFormatter(log_format)
    logger.addHandler(log_handler)

    return logger


def _thread_checker():
    assert current_thread().name == "MainThread", \
        "auto checkpoint must run under main thread"


class AutoCheckpointChecker(object):
    def __init__(self):
        self._run_env = None
        self._platform = None
        self._job_id = None
        self._hdfs_home = None
        self._hdfs_name = None
        self._hdfs_ugi = None
        self._hdfs_checkpoint_path = None
        self._trainer_id = None
        self._ce_test = None

        self._run_env = os.getenv("PADDLE_RUNNING_ENV")
        if self._run_env != "PADDLE_EDL_AUTO_CHECKPOINT":
            return

        try:
            self._platform = os.environ["PADDLE_RUNNING_PLATFORM"]
            self._job_id = os.environ["PADDLE_JOB_ID"]
            self._hdfs_home = os.environ["PADDLE_EDL_HDFS_HOME"]
            self._hdfs_name = os.environ["PADDLE_EDL_HDFS_NAME"]
            self._hdfs_ugi = os.environ["PADDLE_EDL_HDFS_UGI"]
            self._hdfs_checkpoint_path = os.environ[
                "PADDLE_EDL_HDFS_CHECKPOINT_PATH"]
            self._trainer_id = int(os.environ["PADDLE_TRAINER_ID"])

            self._ce_test = int(os.getenv("PADDLE_EDL_ONLY_FOR_CE_TEST", "0"))
            self._fs_cache = os.getenv("PADDLE_EDL_FS_CACHE", ".cache")

            self._save_checkpoint_inter = int(
                os.getenv("PADDLE_EDL_SAVE_CHECKPOINT_INTER", "900"))  #s

            if not self._ce_test:
                assert len(self._hdfs_home) > 3 and \
                    len(self._hdfs_name) > 6 and \
                    len(self._hdfs_ugi) > 3 and \
                    len(self._hdfs_checkpoint_path) > 0, "hdfs environ must set"
            else:
                assert len(self._hdfs_home) > 3 and \
                    len(self._hdfs_checkpoint_path) > 0, "hdfs environ must set"

        except Exception as e:
            logger.fatal("exception:{}".format(e))
            sys.exit(1)

    def get_range_checkpoint_path(self, name):
        return "{}/{}/range/{}".format(self.hdfs_checkpoint_path, self.job_id,
                                       name)

    def get_exe_checkpoint_path(self, name):
        return "{}/{}/exe/{}".format(self.hdfs_checkpoint_path, self.job_id,
                                     name)

    def get_job_path(self):
        return "{}/{}".format(self.hdfs_checkpoint_path, self.job_id)

    @property
    def save_checkpoint_inter(self):
        return self._save_checkpoint_inter

    def valid(self):
        if in_dygraph_mode():
            return False

        return  self._run_env is not None and \
            self._platform is not None and \
            self._job_id is not None and \
            self._hdfs_home is not None and \
            self._hdfs_name is not None and \
            self._hdfs_ugi is not None and \
            self._hdfs_checkpoint_path is not None and \
            self._trainer_id is not None

    def __str__(self):
        return "run_env:{} platform:{} job_id:{} \
            hdfs_home:{} hdfs_name:{} hdfs_ugi:{} \
            hdfs_checkpoint_path:{} trainer_id:{} ce_test".format(
            self._run_env, self._platform, self._hdfs_home, self._hdfs_name,
            self._hdfs_ugi, self._hdfs_checkpoint_path, self._trainer_id,
            self._ce_test)

    @property
    def trainer_id(self):
        return self._trainer_id

    @property
    def run_env(self):
        return self._run_env

    @property
    def platform(self):
        return self._platform

    @property
    def job_id(self):
        return self._job_id

    @property
    def hdfs_home(self):
        return self._hdfs_home

    @property
    def hdfs_name(self):
        return self._hdfs_name

    @property
    def ce_test(self):
        return self._ce_test

    @property
    def hdfs_ugi(self):
        return self._hdfs_ugi

    @property
    def hdfs_checkpoint_path(self):
        return self._hdfs_checkpoint_path

    @staticmethod
    def generate_range_name():
        return generator("_range_")


class ExeTrainStatus(SerializableBase):
    def __init__(self):
        self._epoch_no = -1  # start epoch_no
        self._hash_key = None
        self._key = None
        self._checkpoint_path = None
        self._checkpoint_no = None
        self._restored_from = None
        self._exe = None
        self._program = None
        self._exe_name = None
        self._program_name = None

        self._file_name = "exe_train_status"

    def __eq__(self, t):
        return self._epoch_no == t._epoch_no and \
            self._hash_key == t._hash_key and \
            self._key == t._key and \
            self._checkpoint_path == t._checkpoint_path and \
            self._checkpoint_no == t._checkpoint_no and \
            self._exe_name == t._exe_name and \
            self._program_name == t._program_name

    def __ne__(self, t):
        return not self == t

    def serialize(self, path):
        file_name = "{}/{}".format(path, self._file_name)
        with open(file_name, 'w') as f:
            s = self._serialize()
            f.write(s)

    def _serialize(self, pop_keys=["restored_from"]):
        d = self._to_dict()
        for k in pop_keys:
            d.pop(k, None)
        return json.dumps(d)

    def deserialize(self, path):
        d = None
        file_name = "{}/{}".format(path, self._file_name)
        with open(file_name, 'r') as f:
            s = f.read()
            self._deserialize(s)

    def _deserialize(self, s):
        d = json.loads(s)
        self._epoch_no = d["epoch_no"]
        self._key = d["key"]
        self._hash_key = d["hash_key"]
        self._checkpoint_path = d["checkpoint_path"]
        self._checkpoint_no = d["checkpoint_no"]
        self._exe_name = d["exe_name"]
        self._program_name = d["program_name"]

    def _to_dict(self):
        return {
            "epoch_no": self._epoch_no,
            "key": self._key,
            "hash_key": self._hash_key,
            "checkpoint_path": self._checkpoint_path,
            "restored_from": self._restored_from,
            "exe_name": self._exe_name,
            "program_name": self._program_name,
            "checkpoint_no": self._checkpoint_no
        }

    def __str__(self):
        return self._serialize([])


class TrainEpochRange(SerializableBase):
    def __init__(self,
                 max_epoch_num,
                 name,
                 checkpoint_inter=None,
                 restored=True):
        self._max_epoch_num = max_epoch_num
        self._epoch_no = -1  # current epoch_no
        self._name = name
        self._restored_from = None
        self._exe_status = {}
        self._flag_generated = False

        self._checker = g_checker
        if checkpoint_inter is not None:
            self._save_checkpoint_inter = checkpoint_inter
        else:
            self._save_checkpoint_inter = self._checker.save_checkpoint_inter
        assert self._save_checkpoint_inter >= 0, "checkpointer:{} must >=0".format(
            self._save_checkpoint_inter)
        self._last_checkpoint_time = time.time()

        self._load_cp_nos = None
        self._checkpoint_epoch_no = None

        if not self._checker.valid():
            return

        self._file_name = "range_train_status"

        if not restored:
            return

        self._checkpoint_path = self._checker.get_range_checkpoint_path(name)

        config = {
            "fs.default.name": self._checker.hdfs_name,
            "hadoop.job.ugi": self._checker.hdfs_ugi
        }

        if self._checker.ce_test:
            config = None

308
        from paddle.distributed.fleet.utils.fs import HDFSClient
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
        self._hdfs = HDFSClient(self._checker.hdfs_home, config)

        self._cper = CheckpointSaver(self._hdfs)

        _thread_checker()

        self._get_last_valid_checkpoint()

    def _look_for_valid(self, cp_nos):
        cps = []
        epoch_no = -1
        for i in cp_nos[::-1]:
            t = TrainEpochRange(self._max_epoch_num, self.name, restored=False)
            self._cper.load_checkpoint(
                self._checkpoint_path, [t],
                self._checker.trainer_id,
                checkpoint_no=i,
                local_cache_path=self._checker._fs_cache)
            cps.append(t)
            logger.debug("look for valid:{} t:{}".format(i, t._serialize()))
            if epoch_no < 0:
                epoch_no = t._epoch_no
            else:
                if epoch_no - t._epoch_no >= 1:
                    return t, i
        return None, None

    def _get_last_valid_checkpoint(self):
        self._load_cp_nos = self._cper.get_checkpoint_no(self._checkpoint_path)
        logger.info("find checkpoint nos:{}".format(self._load_cp_nos))

        if len(self._load_cp_nos) < 1:
            self._restored_from = CONST_MEMORYINIT
            return

        if g_acp_type == CONST_ACP_TYPE:
            # get the last one
            self._cper.load_checkpoint(
                self._checkpoint_path, [self],
                self._checker.trainer_id,
                local_cache_path=self._checker._fs_cache)
            self._restored_from = CONST_CHECKPOINT
            self._checkpoint_epoch_no = self._epoch_no

            logger.info("load tain_epoch_range checkpoint:{}".format(
                self._serialize()))

        elif g_acp_type == CONST_DACP_TYPE:
            t, i = self._look_for_valid(self._load_cp_nos)
            if t is None:
                self._restored_from = CONST_MEMORYINIT
                return

            self._cper.load_checkpoint(
                self._checkpoint_path, [self],
                self._checker.trainer_id,
                checkpoint_no=i,
                local_cache_path=self._checker._fs_cache)

            self._restored_from = CONST_CHECKPOINT
            self._checkpoint_epoch_no = self._epoch_no
            logger.info("load tain_epoch_range checkpoint:{}".format(
                self._serialize()))
        else:
            assert False, "not supported acp_type:{}".format(g_acp_type)

    def _to_dict(self):
        d = {
            "max_epoch_num": self._max_epoch_num,
            "epoch_no": self._epoch_no,
            "name": self._name,
            "checkpoint_path": self._checkpoint_path,
            "restored_from": self._restored_from,
            "checkpoint_epoch_no": self._checkpoint_epoch_no
        }
        return d

    def __str__(self):
        return self._serialize([])

    @property
    def name(self):
        return self._name

    def serialize(self, path):
        file_name = "{}/{}".format(path, self._file_name)
        with open(file_name, 'w') as f:
            s = self._serialize()
            f.write(s)

    def _serialize(self, pop_keys=["restored_from", "checkpoint_epoch_no"]):
        # self
        d = self._to_dict()
        for k in pop_keys:
            d.pop(k, None)

        # registerd exes
        d["exe_status"] = {}
        e = d["exe_status"]
        for k, t in six.iteritems(self._exe_status):
            e[t._key] = t._serialize()
        return json.dumps(d)

    @property
    def restored_from(self):
        return self._restored_from

    def deserialize(self, path):
        d = None
        file_name = "{}/{}".format(path, self._file_name)
        with open(file_name, 'r') as f:
            d = json.load(f)

        # self
        self._max_epoch_num = d["max_epoch_num"]
        self._epoch_no = d["epoch_no"]
        self._name = d["name"]
        self._checkpoint_path = d["checkpoint_path"]

        # exes status
        e = d["exe_status"]
        for k, v in six.iteritems(e):
            t = ExeTrainStatus()
            t._deserialize(v)
            self._exe_status[k] = t

    def next(self):
        _thread_checker()

        if self._max_epoch_num < 0:
            self._max_epoch_num = sys.maxint

        assert self._epoch_no >= -1, "self._epoch_no:{} must >=-1".format(
            self._epoch_no)

        self._last_checkpoint_time = time.time()
        start = self._epoch_no + 1
        logger.info("started epoch_no:{} max_epoch_num:{}".format(
            start, self._max_epoch_num))

        for i in range(start, self._max_epoch_num):
            self._epoch_no = i
            yield i

            self.save_checkpoint()

    def get(self):
        return self._epoch_no

    def save_checkpoint(self):
        # not save last one because exe and program can't be restored.
        if self._checker.trainer_id == 0:

            if time.time() - self._last_checkpoint_time >= \
                    self._save_checkpoint_inter:
                if g_acp_type == CONST_ACP_TYPE:
                    # not save the last one
                    if self._max_epoch_num > 0 and self._epoch_no != self._max_epoch_num - 1:
                        self._save_checkpoint()
                elif g_acp_type == CONST_DACP_TYPE:
                    self._save_checkpoint()
                else:
                    assert False, "not supported acp_type:{}".format(g_acp_type)
            self._last_checkpoint_time = time.time()

    def _save_checkpoint(self):
        """
        status => /jobid/xxx_range_xx/range/
        model =>                       /exe/
        """
        if not self._checker.valid():
            return

        e = self._exe_status
        for k, t in six.iteritems(self._exe_status):
            m = PaddleModel(t._exe, t._program)
            p = self._checker.get_exe_checkpoint_path(t._hash_key)
            t._epoch_no = self.get()
            path, checkpoint_no = self._cper.save_checkpoint(
                p, [m],
                self._checker.trainer_id,
                local_cache_path=self._checker._fs_cache)
            # index info
            t._checkpoint_path = path
            t._checkpoint_no = checkpoint_no

            e[t._key] = t

            logger.debug("save executor checkpoint:{}".format(t._serialize()))

        if len(self._exe_status) > 0:
            self._cper.save_checkpoint(
                self._checkpoint_path, [self],
                local_cache_path=self._checker._fs_cache)
            logger.info("save train_epoch_range checkpoint:{}".format(
                self._serialize()))

            self._generate_flag()

    def _generate_flag(self):
        if self._flag_generated:
            return

        name = "can_be_auto_checkpoint.flag"
        path = self._checker.get_job_path() + "/" + name
        logger.info("this job can_be_auto_checkpoint")
        self._hdfs.mkdirs(self._checker.get_job_path())
        self._hdfs.touch(path, exist_ok=True)

        self._flag_generated = True


def _get_train_epoch_range():
    return g_train_epoch_range


def _check_program_oprole(program):
    global_block = program.global_block()
    has_backward = False
    has_opt = False
    for idx, op in enumerate(global_block.ops):
        if op._is_backward_op():
            has_backward = True

        if op._is_optimize_op():
            has_opt = True

        if has_backward and has_opt:
            return True

    return False


def _can_auto_checkpoint(prog):
    if not isinstance(prog, compiler.CompiledProgram) and \
            not isinstance(prog, Program):
        return False

    if isinstance(prog, compiler.CompiledProgram):
        if prog._program is None or \
                prog._program._is_distributed:
            return False
    else:
        if prog._is_distributed:
            return False

    program = _get_valid_program(prog)

    if program._auto_checkpoint_name in g_program_attr:
        if not g_program_attr[program._auto_checkpoint_name]:
            return False
    else:
        ret = False
        if isinstance(program, compiler.CompiledProgram):
            ret = _check_program_oprole(program._program)
        else:
            ret = _check_program_oprole(program)

        g_program_attr[program._auto_checkpoint_name] = ret
        if not ret:
            logger.debug("program {} need't to auto checkpoint".format(
                program._auto_checkpoint_name))
            return False

    return g_checker.valid() and g_train_epoch_range is not None


def _get_running_key(exe_name, program_name):
    return "{}_{}".format(exe_name, program_name)


def _get_checker():
    _get_logger(20)
    global g_checker
    if g_checker is None:
        g_checker = AutoCheckpointChecker()

    return g_checker


def _normal_yield(max_epoch_num):
    if max_epoch_num < 0:
        max_epoch_num = sys.maxint
    for i in range(0, max_epoch_num):
        yield i

    return


def train_epoch_range(max_epoch_num, save_checkpoint_inter=None):
    global g_acp_type
    if not _get_checker().valid():
        logger.warning(
            "auto checkpoint will take effect  automaticly on PaddleCloud")
        for i in _normal_yield(max_epoch_num):
            yield i

        return

    if g_acp_type == CONST_DACP_TYPE:
        for i in _normal_yield(max_epoch_num):
            yield i

        return

    g_acp_type = CONST_ACP_TYPE
    logger.info("acp_type:{}".format(g_acp_type))

    global g_train_epoch_range
    try:
        g_train_epoch_range = TrainEpochRange(
            max_epoch_num,
            g_checker.generate_range_name(),
            checkpoint_inter=save_checkpoint_inter)

        for i in g_train_epoch_range.next():
            yield i
    finally:
        g_train_epoch_range = None


def _get_valid_program(prog):
    if isinstance(prog, compiler.CompiledProgram):
        return prog._program

    return prog


def _auto_checkpoint(exe, prog):
    _get_checker()

    assert exe._auto_checkpoint_name != None
    if not _can_auto_checkpoint(prog):
        return

    program = _get_valid_program(prog)
    assert program._auto_checkpoint_name != None

    exe_status = g_train_epoch_range._exe_status
    key = _get_running_key(exe._auto_checkpoint_name,
                           program._auto_checkpoint_name)

    if g_train_epoch_range.restored_from == CONST_CHECKPOINT:
        assert key in exe_status, "when restored key:{} must be in train_epoch_range:{}".format(
            key, g_train_epoch_range)

    t = None
    if key in exe_status:
        t = exe_status[key]
        if t._restored_from is None:
            a = CheckpointSaver(g_train_epoch_range._hdfs)
            m = PaddleModel(exe, program)
            a.load_checkpoint(
                g_checker.get_exe_checkpoint_path(key), [m],
                trainer_id=g_checker.trainer_id,
                checkpoint_no=t._checkpoint_no,
                local_cache_path=g_checker._fs_cache)
            t._restored_from = CONST_CHECKPOINT
            logger.info("load executor checkpoint {}".format(t))
        t._exe = exe
        t._program = program
        t._epoch_no = g_train_epoch_range.get()
    else:
        t = ExeTrainStatus()
        t._epoch_no = g_train_epoch_range.get()
        t._hash_key = key
        t._key = key
        t._restored_from = CONST_MEMORYINIT
        t._exe = exe
        t._program = program
        t._exe_name = exe._auto_checkpoint_name
        t._program_name = program._auto_checkpoint_name

        # register this <exe,program,io>
        exe_status[key] = t

        logger.info("not found checkpoint, so train from epoch 0")

    _thread_checker()