while_op.cc 14.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yang Yang(Tony) 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yang Yang(Tony) 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yang Yang(Tony) 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yang Yang(Tony) 已提交
14 15

#include <vector>
Y
Yi Wang 已提交
16 17 18 19
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
S
sneaxiy 已提交
20
#include "paddle/fluid/framework/var_type.h"
Y
Yi Wang 已提交
21
#include "paddle/fluid/operators/detail/safe_ref.h"
Y
Yang Yang(Tony) 已提交
22 23 24 25 26 27 28

namespace paddle {
namespace operators {

using StepScopeVar = std::vector<framework::Scope *>;
using LoDTensor = framework::LoDTensor;

Y
Yang Yu 已提交
29 30 31 32 33 34
static constexpr char kStepBlock[] = "sub_block";
static constexpr char kCondition[] = "Condition";
static constexpr char kStepScopes[] = "StepScopes";
static constexpr char kX[] = "X";
static constexpr char kXGRAD[] = "X@GRAD";
static constexpr char kOutputs[] = "Out";
Y
Yang Yang(Tony) 已提交
35 36 37 38 39 40 41 42

class WhileOp : public framework::OperatorBase {
 public:
  WhileOp(const std::string &type, const framework::VariableNameMap &inputs,
          const framework::VariableNameMap &outputs,
          const framework::AttributeMap &attrs)
      : framework::OperatorBase(type, inputs, outputs, attrs) {}

43 44 45
 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &dev_place) const override {
Y
Yang Yang(Tony) 已提交
46 47 48 49
    PADDLE_ENFORCE_NOT_NULL(scope.FindVar(Input(kCondition)));
    auto &cond = scope.FindVar(Input(kCondition))->Get<LoDTensor>();
    PADDLE_ENFORCE_EQ(cond.dims(), paddle::framework::make_ddim({1}));

D
dzhwinter 已提交
50
    framework::Executor executor(dev_place);
Y
Yu Yang 已提交
51
    auto *block = Attr<framework::BlockDesc *>(kStepBlock);
D
dzhwinter 已提交
52

Y
Yang Yang(Tony) 已提交
53 54 55 56 57
    auto *program = block->Program();

    auto step_scopes =
        scope.FindVar(Output(kStepScopes))->GetMutable<StepScopeVar>();

Y
Yang Yu 已提交
58 59
    PADDLE_ENFORCE(platform::is_cpu_place(cond.place()),
                   "Condition of while op must in CPU memory.");
Y
Yang Yang(Tony) 已提交
60 61 62 63 64 65 66 67 68 69 70 71
    while (cond.data<bool>()[0]) {
      auto &current_scope = scope.NewScope();
      step_scopes->push_back(&current_scope);

      executor.Run(*program, &current_scope, block->ID(),
                   false /*create_local_scope*/);
    }
  }
};

class WhileOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
72
  void Make() override {
Y
Yang Yu 已提交
73
    AddInput(kX,
Y
Yang Yang(Tony) 已提交
74 75 76 77 78 79 80
             "A set of variables, which are required by operators inside the "
             "block of While Op.")
        .AsDuplicable();
    AddInput(
        kCondition,
        "(Bool) An scalar. When it's False, the While Op will be terminated.")
        .AsDuplicable();
Y
Yang Yang(Tony) 已提交
81
    AddOutput(kOutputs,
Y
Yang Yang(Tony) 已提交
82
              "A set of variables, which will be assigned with values "
Y
Yang Yang(Tony) 已提交
83
              "generated by the operators inside the block of While Op.")
Y
Yang Yang(Tony) 已提交
84 85 86 87 88
        .AsDuplicable();
    AddOutput(kStepScopes,
              "(StepScopeVar) A vector of local scope, which size equals the "
              "step number of While Op. The i'th scope storages temporary "
              "variables generated in the i'th step.");
Y
Yu Yang 已提交
89 90
    AddAttr<framework::BlockDesc *>(kStepBlock,
                                    "The step block inside WhileOp");
Y
Yang Yang(Tony) 已提交
91 92 93 94 95 96 97 98 99 100 101 102
    AddComment(R"DOC(
)DOC");
  }
};

class WhileGradOp : public framework::OperatorBase {
 public:
  WhileGradOp(const std::string &type, const framework::VariableNameMap &inputs,
              const framework::VariableNameMap &outputs,
              const framework::AttributeMap &attrs)
      : framework::OperatorBase(type, inputs, outputs, attrs) {}

103 104 105
 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &dev_place) const override {
106 107 108
    // get device context from pool
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &dev_ctx = *pool.Get(dev_place);
D
dzhwinter 已提交
109
    framework::Executor executor(dev_place);
Y
Yu Yang 已提交
110
    auto *block = Attr<framework::BlockDesc *>(kStepBlock);
Y
Yang Yang(Tony) 已提交
111 112 113 114 115
    auto *program = block->Program();

    auto *step_scopes =
        scope.FindVar(Input(kStepScopes))->GetMutable<StepScopeVar>();

Y
Yang Yang(Tony) 已提交
116 117 118 119 120 121
    auto outside_og_names = Inputs(framework::GradVarName(kOutputs));
    auto inside_og_names =
        Attr<std::vector<std::string>>("original_output_grad");

    PADDLE_ENFORCE_EQ(outside_og_names.size(), inside_og_names.size());

Y
Yang Yang(Tony) 已提交
122 123
    for (auto cur_scope_iter = step_scopes->rbegin();
         cur_scope_iter != step_scopes->rend(); ++cur_scope_iter) {
Y
Yang Yang(Tony) 已提交
124 125 126 127 128 129 130
      VLOG(3) << "Start backward at time_step "
              << cur_scope_iter - step_scopes->rbegin();
      framework::Scope &cur_scope = **cur_scope_iter;
      // Link OG from outside to inside
      for (size_t i = 0; i < outside_og_names.size(); ++i) {
        auto outside_og_name = outside_og_names[i];
        auto inside_og_name = inside_og_names[i];
131 132
        VLOG(8) << "Linking outside " << outside_og_name << " --> inside "
                << inside_og_name;
133 134 135 136 137 138
        auto &og_outside =
            detail::Ref(scope.FindVar(outside_og_name),
                        "Cannot find Outside Gradient %s", outside_og_name);
        auto &og_inside =
            detail::Ref(cur_scope.Var(inside_og_name),
                        "Cannot find inside gradient %s", inside_og_name);
S
sneaxiy 已提交
139
        if (framework::IsType<framework::LoDTensor>(og_outside.Type())) {
Y
Yang Yang(Tony) 已提交
140 141 142 143 144
          auto &outside_tensor = og_outside.Get<framework::LoDTensor>();
          auto &inside_tensor =
              detail::Ref(og_inside.GetMutable<framework::LoDTensor>());
          inside_tensor.set_lod(outside_tensor.lod());
          inside_tensor.ShareDataWith(outside_tensor);
S
sneaxiy 已提交
145 146
        } else if (framework::IsType<framework::LoDTensorArray>(
                       og_outside.Type())) {
Y
Yang Yang(Tony) 已提交
147 148 149
          auto &outside_array = og_outside.Get<framework::LoDTensorArray>();
          auto &inside_array =
              detail::Ref(og_inside.GetMutable<framework::LoDTensorArray>());
150
          VLOG(8) << outside_og_name << " size = " << outside_array.size();
Y
Yang Yang(Tony) 已提交
151 152 153
          inside_array.resize(outside_array.size());

          for (size_t j = 0; j < inside_array.size(); ++j) {
154
            VLOG(8) << j << " " << outside_array[j].numel();
Y
Yang Yang(Tony) 已提交
155 156 157 158 159 160 161 162 163 164
            if (outside_array[j].numel() != 0) {
              inside_array[j].set_lod(outside_array[j].lod());
              inside_array[j].ShareDataWith(outside_array[j]);
            } else {
              PADDLE_ENFORCE_EQ(inside_array[j].numel(), 0);
            }
          }
        }
      }

Y
Yang Yang(Tony) 已提交
165 166
      executor.Run(*program, *cur_scope_iter, block->ID(), false);

Y
Yang Yu 已提交
167 168
      auto &pg_names = Outputs(kXGRAD);
      auto &p_names = Inputs(kX);
Y
Yang Yang(Tony) 已提交
169
      PADDLE_ENFORCE_EQ(pg_names.size(), p_names.size());
Y
Yang Yang(Tony) 已提交
170 171
      for (size_t param_id = 0; param_id < pg_names.size(); ++param_id) {
        if (pg_names[param_id] == framework::kEmptyVarName) {
172
          continue;  // parameter doesn't have gradient
Y
Yang Yang(Tony) 已提交
173 174
        }
        auto inside_grad_name = framework::GradVarName(p_names[param_id]);
Y
Yang Yang(Tony) 已提交
175

Y
Yang Yang(Tony) 已提交
176
        //  // TODO(tonyyang-svail): Not sure we need the following
Y
Yang Yang(Tony) 已提交
177 178 179 180 181 182 183 184 185 186 187
        //  // If does not compute gradient of that variable inside rnn,
        //  just
        //  // continue
        //  if (local_var_names.find(inside_grad_name) ==
        //  local_var_names.end()) {
        //    continue;
        //  }

        // zero gradient variable in step 0
        if (cur_scope_iter == step_scopes->rbegin()) {
          auto *var = (*cur_scope_iter)->FindVar(inside_grad_name);
Y
Yang Yang(Tony) 已提交
188
          PADDLE_ENFORCE_NOT_NULL(var, "Can not find var %s", inside_grad_name);
Y
Yang Yang(Tony) 已提交
189 190 191
          if (var->IsType<LoDTensor>()) {
            auto &inside_tensor = var->Get<framework::LoDTensor>();
            framework::AttributeMap attrs;
F
fengjiayi 已提交
192
            attrs["dtype"] = framework::ToDataType(inside_tensor.type());
Y
Yang Yang(Tony) 已提交
193 194 195
            attrs["shape"] = framework::vectorize2int(inside_tensor.dims());
            attrs["value"] = 0.0f;

196
            auto var_name = pg_names[param_id];
Y
Yang Yang(Tony) 已提交
197
            auto zero_op = framework::OpRegistry::CreateOp(
Y
Yiqun Liu 已提交
198
                "fill_constant", framework::VariableNameMap{},
199
                {{"Out", {var_name}}}, attrs);
D
dzhwinter 已提交
200
            zero_op->Run(scope, dev_place);
201 202 203
            scope.FindVar(var_name)
                ->GetMutable<framework::LoDTensor>()
                ->set_lod(inside_tensor.lod());
Y
Yang Yang(Tony) 已提交
204 205
          }
        }
Y
Yang Yang(Tony) 已提交
206
        auto new_inside_name = cur_scope.Rename(inside_grad_name);
Y
Yang Yang(Tony) 已提交
207
        auto sum_op = framework::OpRegistry::CreateOp(
Y
Yang Yang(Tony) 已提交
208
            "sum", {{"X", {pg_names[param_id], new_inside_name}}},
209 210
            {{"Out", {pg_names[param_id]}}},
            framework::AttributeMap{{"use_mkldnn", {false}}});
D
dzhwinter 已提交
211
        sum_op->Run(cur_scope, dev_place);
Y
Yang Yang(Tony) 已提交
212
        cur_scope.Rename(new_inside_name, inside_grad_name);
Y
Yang Yang(Tony) 已提交
213
      }
214 215
      dev_ctx.Wait();
      const_cast<framework::Scope &>(scope).DeleteScope(&cur_scope);
Y
Yang Yang(Tony) 已提交
216 217 218 219 220 221 222 223 224
    }
  }
};

class WhileGradOpDescMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
Y
Yu Yang 已提交
225
  std::unique_ptr<framework::OpDesc> Apply() const override {
F
Update  
fengjiayi 已提交
226 227 228 229 230 231 232
    auto *while_grad = new framework::OpDesc();
    while_grad->SetType("while_grad");
    while_grad->SetInput(kX, Input(kX));
    while_grad->SetInput(kOutputs, Output(kOutputs));
    while_grad->SetInput(kStepScopes, Output(kStepScopes));

    auto *grad_block = this->grad_block_[0];
Y
Yu Yang 已提交
233 234
    auto *fwd_block = grad_block->ForwardBlock();
    auto *parent_block = grad_block->ParentBlock();
235 236 237

    // Not all of IGs will be generated by inner gradient operators of while op.
    // Ignore IGs that is not generated by the inside block.
F
Update  
fengjiayi 已提交
238 239 240 241
    std::unordered_set<std::string> inner_op_outputs;
    for (const auto *op : grad_block->AllOps()) {
      for (auto &oname : op->OutputArgumentNames()) {
        inner_op_outputs.insert(oname);
242 243
      }
    }
F
Update  
fengjiayi 已提交
244
    auto igs = InputGrad(kX, /*do not drop empty gradient*/ false);
245
    for (auto &each_ig : igs) {
F
Update  
fengjiayi 已提交
246
      if (inner_op_outputs.find(each_ig) == inner_op_outputs.end()) {
247
        VLOG(8) << "Ignore " << each_ig;
248 249 250
        each_ig = framework::kEmptyVarName;
      }
    }
F
Update  
fengjiayi 已提交
251
    while_grad->SetOutput(framework::GradVarName(kX), igs);
Y
Yang Yang(Tony) 已提交
252 253 254 255

    // OG should be re-calculated by step blocks, since many outputs of while op
    // do not need to calculate gradients.
    std::unordered_set<std::string> block_ins;
F
fengjiayi 已提交
256 257 258 259 260 261 262
    block_ins.reserve(Input(kX).size() + Output(kOutputs).size());
    for (auto &p : Input(kX)) {
      block_ins.insert(p);
    }
    for (auto &o : Output(kOutputs)) {
      block_ins.insert(o);
    }
Y
Yu Yang 已提交
263
    std::unordered_set<std::string> output_grads;
F
Update  
fengjiayi 已提交
264 265 266 267
    for (const auto *op : grad_block->AllOps()) {
      for (auto &input_name : op->InputArgumentNames()) {
        // If the input of Op has been recorded or is generated by the forward
        // block, do not make it as input again.
Y
Yu Yang 已提交
268 269 270

        // The input is located in I/O or other op's outputs or the variable is
        // located in grad_block's parents
F
Update  
fengjiayi 已提交
271
        if (block_ins.find(input_name) != block_ins.end() ||
Y
Yu Yang 已提交
272 273
            (fwd_block->FindVarRecursive(input_name) != nullptr ||
             parent_block->FindVarRecursive(input_name) != nullptr)) {
Y
Yang Yang(Tony) 已提交
274 275
          continue;
        }
Y
Yu Yang 已提交
276
        output_grads.insert(input_name);
Y
Yang Yang(Tony) 已提交
277
      }
F
Update  
fengjiayi 已提交
278
      for (auto &output_name : op->OutputArgumentNames()) {
Y
Yang Yang(Tony) 已提交
279
        block_ins.insert(output_name);
Y
Yang Yang(Tony) 已提交
280 281
      }
    }
Y
Yang Yang(Tony) 已提交
282

Y
Yu Yang 已提交
283 284 285 286 287
    std::vector<std::string> output_grads_list;
    output_grads_list.resize(output_grads.size());
    std::copy(output_grads.begin(), output_grads.end(),
              output_grads_list.begin());
    while_grad->SetInput(framework::GradVarName(kOutputs), output_grads_list);
F
Update  
fengjiayi 已提交
288 289

    while_grad->SetAttrMap(this->Attrs());
A
Abhinav Arora 已提交
290
    while_grad->SetBlockAttr(kStepBlock, grad_block);
Y
Yang Yang(Tony) 已提交
291 292
    // record the original output gradient names, since the gradient name of
    // while operator could be renamed.
Y
Yu Yang 已提交
293
    while_grad->SetAttr("original_output_grad", output_grads_list);
Y
Yang Yang(Tony) 已提交
294

F
Update  
fengjiayi 已提交
295
    return std::unique_ptr<framework::OpDesc>(while_grad);
Y
Yang Yang(Tony) 已提交
296 297 298
  }
};

Y
Yang Yang(Tony) 已提交
299 300
class WhileGradOpVarTypeInference : public framework::VarTypeInference {
 public:
Y
Yu Yang 已提交
301 302
  void operator()(const framework::OpDesc &op_desc,
                  framework::BlockDesc *block) const override {
Y
Yang Yu 已提交
303 304
    auto p_names = op_desc.Input(kX);
    auto pg_names = op_desc.Output(framework::GradVarName(kX));
Y
Yang Yang(Tony) 已提交
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321

    for (size_t i = 0; i < p_names.size(); ++i) {
      auto &p_var = detail::Ref(block->FindVarRecursive(p_names[i]));
      auto *g_var = block->FindVarRecursive(pg_names[i]);
      if (g_var != nullptr) {  // Gradient could be @EMPTY@
        VLOG(5) << "Setting " << pg_names[i] << " following " << p_names[i]
                << " type: " << p_var.GetType();
        g_var->SetType(p_var.GetType());
        g_var->SetDataType(p_var.GetDataType());
      }
    }
  }
};

class WhileGradOpShapeInference : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *ctx) const override {
Y
Yang Yu 已提交
322 323
    ctx->HasInputs(kX);
    ctx->HasOutputs(framework::GradVarName(kX));
Y
Yang Yang(Tony) 已提交
324 325 326
    ctx->HasInputs(kOutputs);
    ctx->HasInputs(framework::GradVarName(kOutputs));

Y
Yang Yu 已提交
327 328 329
    auto p_names = ctx->Inputs(kX);
    auto pg_names = ctx->Outputs(kXGRAD);
    auto var_types = ctx->GetInputsVarType(kX);
Y
Yang Yang(Tony) 已提交
330 331 332 333 334 335
    std::vector<std::string> names_to_set;
    std::vector<framework::DDim> dims_to_set;
    for (size_t i = 0; i < p_names.size(); ++i) {
      if (pg_names[i] == framework::kEmptyVarName) {
        continue;
      }
Y
Yang Yu 已提交
336
      auto dims = ctx->GetInputsElementDim(kX, i);
337
      if (var_types[i] == framework::proto::VarType::LOD_TENSOR) {
Y
Yang Yang(Tony) 已提交
338
        names_to_set.push_back(pg_names[i]);
F
fengjiayi 已提交
339
        dims_to_set.push_back(dims);
340
      } else if (var_types[i] == framework::proto::VarType::LOD_TENSOR_ARRAY) {
Y
Yang Yang(Tony) 已提交
341 342
        // not sure how to set the dim of LOD_TENSOR_ARRAY
        names_to_set.push_back(pg_names[i]);
F
fengjiayi 已提交
343
        dims_to_set.push_back(dims);
Y
Yang Yang(Tony) 已提交
344 345 346 347 348 349
      }
    }
    ctx->SetDims(names_to_set, dims_to_set);
  }
};

Y
Yang Yang(Tony) 已提交
350 351 352 353 354 355
}  // namespace operators
}  // namespace paddle

REGISTER_OPERATOR(while, paddle::operators::WhileOp,
                  paddle::operators::WhileOpMaker,
                  paddle::operators::WhileGradOpDescMaker);
Y
Yang Yang(Tony) 已提交
356 357 358
REGISTER_OPERATOR(while_grad, paddle::operators::WhileGradOp,
                  paddle::operators::WhileGradOpShapeInference,
                  paddle::operators::WhileGradOpVarTypeInference);