quant_layers.py 27.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.fluid.dygraph import layers
from paddle.fluid import core
from paddle.fluid import dygraph_utils
from paddle.fluid import unique_name
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.framework import _varbase_creator
from paddle.fluid.framework import in_dygraph_mode
from paddle.fluid.initializer import Constant
from paddle.fluid.data_feeder import check_variable_and_dtype
H
huangxu96 已提交
24
from paddle.nn import functional as F
25 26
import logging
from paddle.fluid.log_helper import get_logger
W
wanghuancoder 已提交
27
from paddle import _C_ops
28 29

__all__ = [
30
    'FakeQuantAbsMax',
31
    'FakeQuantMovingAverageAbsMax',
32 33
    'FakeQuantChannelWiseAbsMax',
    'QuantizedConv2D',
34
    'QuantizedConv2DTranspose',
35 36 37 38
    'QuantizedLinear',
    'MovingAverageAbsMaxScale',
    'MAOutputScaleLayer',
    'FakeQuantMAOutputScaleLayer',
39
    'QuantStub',
40 41
]

42 43
_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')
44

45

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
class FakeQuantAbsMax(layers.Layer):
    r"""
    FakeQuantAbsMax layer does the abs_max quant and then dequant.
    Its computational formula is described as below:

    :math:`scale = max(abs(X))`
    :math:`range = 2^{bit\_length - 1} - 1`
    :math:`Out = round(X / scale * range) * scale / range`
    """

    def __init__(self,
                 name=None,
                 quant_bits=8,
                 dtype='float32',
                 quant_on_weight=False):
        super(FakeQuantAbsMax, self).__init__()
        self._quant_bits = quant_bits
        self._name = name
        scale_prefix = "{}.scale".format(
            name) if name else 'quant_dequant.scale'
        self._scale_name = unique_name.generate(scale_prefix)
        if quant_on_weight:
            scale_attr = ParamAttr(
                name=self._scale_name,
                initializer=Constant(0.0),
                trainable=False)
            self._scale = self.create_parameter(
                shape=[1], attr=scale_attr, dtype=self._dtype)
            self._scale.stop_gradient = True
        else:
            self._scale = None

    def forward(self, input):
        if in_dygraph_mode():
            attrs = ('bit_length', self._quant_bits)
            quant_out = _varbase_creator(
                type=input.type,
                name="{}.quantized.dequantized".format(input.name),
                shape=input.shape,
                dtype=input.dtype,
                persistable=False)
            out_scale = self._scale
            if not out_scale:
                out_scale = _varbase_creator(
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    name=self._scale_name,
                    shape=[1],
                    dtype=self._dtype,
                    persistable=False)
                out_scale.stop_gradient = True
W
wanghuancoder 已提交
96 97
            out, _, = _C_ops.fake_quantize_dequantize_abs_max(input, quant_out,
                                                              out_scale, *attrs)
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
            return out

        check_variable_and_dtype(input, 'input', ['float32'], "FakeQuantAbsMax")
        attrs = {'bit_length': self._quant_bits}
        inputs = {"X": [input]}
        quant_out = self._helper.create_variable(
            name="{}.quantized.dequantized".format(input.name),
            dtype=input.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=False)
        out_scale = self._scale
        if not out_scale:
            out_scale = self._helper.create_variable(
                name=self._scale_name,
                dtype=self._dtype,
                type=core.VarDesc.VarType.LOD_TENSOR,
                persistable=False,
                stop_gradient=True)
        outputs = {"Out": [quant_out], "OutScale": [out_scale]}

        self._helper.append_op(
            type="fake_quantize_dequantize_abs_max",
            inputs=inputs,
            outputs=outputs,
            attrs=attrs)

        return quant_out


128
class FakeQuantMovingAverageAbsMax(layers.Layer):
129
    r"""
130
    FakeQuantMovingAverageAbsMax layer does the moving_average_abs_max quant and then dequant.
131 132 133 134 135 136 137 138 139 140 141 142
    Its computational formula is described as below:

    :math:`scale = (moving\_rate*accum+max(abs(x)))/(moving\_rate*state+1)`
    :math:`range = 2^{bit\_length - 1} - 1`
    :math:`Out = round(X / scale * range) * scale / range`
    """

    def __init__(self,
                 name=None,
                 moving_rate=0.9,
                 quant_bits=8,
                 dtype='float32'):
143
        super(FakeQuantMovingAverageAbsMax, self).__init__()
144 145 146 147 148 149 150
        self._moving_rate = moving_rate
        self._quant_bits = quant_bits

        scale_prefix = "{}.scale".format(
            name) if name else 'quant_dequant.scale'
        scale_attr = ParamAttr(
            name=unique_name.generate(scale_prefix),
151
            initializer=Constant(0.),
152 153 154 155 156 157 158 159 160
            trainable=False)
        self._scale = self.create_parameter(
            shape=[1], attr=scale_attr, dtype=dtype)
        self._scale.stop_gradient = True

        state_prefix = "{}.state".format(
            name) if name else 'quant_dequant.state'
        state_attr = ParamAttr(
            name=unique_name.generate(state_prefix),
161
            initializer=Constant(0),
162 163 164 165 166 167 168 169 170
            trainable=False)
        self._state = self.create_parameter(
            shape=[1], attr=state_attr, dtype=dtype)
        self._state.stop_gradient = True

        accum_prefix = "{}.accum".format(
            name) if name else 'quant_dequant.accum'
        accum_attr = ParamAttr(
            name=unique_name.generate(accum_prefix),
171
            initializer=Constant(0),
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
            trainable=False)
        self._accum = self.create_parameter(
            shape=[1], attr=accum_attr, dtype=dtype)
        self._accum.stop_gradient = True

    def forward(self, input):
        if in_dygraph_mode():
            attrs = ('moving_rate', self._moving_rate, 'bit_length',
                     self._quant_bits, 'is_test', not self.training)
            quant_out = _varbase_creator(
                type=input.type,
                name="{}.quantized.dequantized".format(input.name),
                shape=input.shape,
                dtype=input.dtype,
                persistable=False)
            state = self._state if self.training else None
            accum = self._accum if self.training else None

W
wanghuancoder 已提交
190
            out, _, _, _ = _C_ops.fake_quantize_dequantize_moving_average_abs_max(
191 192 193 194 195
                input, self._scale, accum, state, quant_out, self._scale, state,
                accum, *attrs)
            return out

        check_variable_and_dtype(input, 'input', ['float32'],
196
                                 "FakeQuantMovingAverageAbsMax")
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
        attrs = {
            'moving_rate': self._moving_rate,
            'bit_length': self._quant_bits,
            'is_test': not self.training
        }
        inputs = {"X": [input], "InScale": [self._scale]}
        quant_out = self._helper.create_variable(
            name="{}.quantized.dequantized".format(input.name),
            dtype=input.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=False)
        outputs = {"Out": [quant_out], "OutScale": [self._scale]}

        if self.training:
            inputs['InState'] = [self._state]
            inputs['InAccum'] = [self._accum]
            outputs['OutState'] = [self._state]
            outputs['OutAccum'] = [self._accum]

        self._helper.append_op(
            type="fake_quantize_dequantize_moving_average_abs_max",
            inputs=inputs,
            outputs=outputs,
            attrs=attrs)

        return quant_out


226
class FakeQuantChannelWiseAbsMax(layers.Layer):
227 228
    def __init__(self,
                 name=None,
229
                 channel_num=None,
230
                 quant_bits=8,
231
                 quant_axis=0,
232 233
                 dtype='float32',
                 quant_on_weight=False):
234 235
        assert quant_on_weight == True, "Channel_wise only can be used on weight quantization."
        super(FakeQuantChannelWiseAbsMax, self).__init__()
236
        self._quant_bits = quant_bits
237 238
        self._quant_axis = quant_axis
        self._dtype = dtype
239
        self._name = name
240
        self._channel_num = channel_num
241 242 243 244 245 246 247 248 249
        scale_prefix = "{}.scale".format(
            name) if name else 'quant_dequant.scale'
        self._scale_name = unique_name.generate(scale_prefix)
        if quant_on_weight:
            scale_attr = ParamAttr(
                name=self._scale_name,
                initializer=Constant(0.0),
                trainable=False)
            self._scale = self.create_parameter(
250
                shape=[self._channel_num], attr=scale_attr, dtype=self._dtype)
251 252 253 254 255 256
            self._scale.stop_gradient = True
        else:
            self._scale = None

    def forward(self, input):
        if in_dygraph_mode():
257 258
            attrs = ('bit_length', self._quant_bits, 'quant_axis',
                     self._quant_axis)
259 260 261 262 263 264
            quant_out = _varbase_creator(
                type=input.type,
                name="{}.quantized.dequantized".format(input.name),
                shape=input.shape,
                dtype=input.dtype,
                persistable=False)
265

266
            out_scale = self._scale
267
            if out_scale is None:
268 269 270
                out_scale = _varbase_creator(
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    name=self._scale_name,
271
                    shape=[self._channel_num],
272 273 274
                    dtype=self._dtype,
                    persistable=False)
                out_scale.stop_gradient = True
275

W
wanghuancoder 已提交
276
            out, _, = _C_ops.fake_channel_wise_quantize_dequantize_abs_max(
277 278 279
                input, quant_out, out_scale, *attrs)
            return out

280 281 282
        check_variable_and_dtype(input, 'input', ['float32'],
                                 "FakeQuantChannelWiseAbsMax")
        attrs = {'bit_length': self._quant_bits, 'quant_axis': self._quant_axis}
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
        inputs = {"X": [input]}
        quant_out = self._helper.create_variable(
            name="{}.quantized.dequantized".format(input.name),
            dtype=input.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=False)
        out_scale = self._scale
        if not out_scale:
            out_scale = self._helper.create_variable(
                name=self._scale_name,
                dtype=self._dtype,
                type=core.VarDesc.VarType.LOD_TENSOR,
                persistable=False,
                stop_gradient=True)
        outputs = {"Out": [quant_out], "OutScale": [out_scale]}

        self._helper.append_op(
301
            type="fake_channel_wise_quantize_dequantize_abs_max",
302 303 304 305 306 307 308
            inputs=inputs,
            outputs=outputs,
            attrs=attrs)

        return quant_out


309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
class MovingAverageAbsMaxScale(layers.Layer):
    def __init__(self, name=None, moving_rate=0.9, dtype='float32'):
        r"""
        MovingAverageMaxScale layer is used to calculating the output quantization
        scale of Layer. Its computational formula is described as below:

        :math:`scale = (moving\_rate*accum+max(abs(x)))/(moving\_rate*state+1)`
        :math:`Out = X`
        """
        super(MovingAverageAbsMaxScale, self).__init__()
        self._moving_rate = moving_rate

        scale_prefix = '{}.scale'.format(name) if name else 'outscale.scale'
        scale_name = unique_name.generate(scale_prefix)
        scale_attr = ParamAttr(
            name=scale_name, initializer=Constant(0), trainable=False)
        self._scale = self.create_parameter(
            shape=[1], attr=scale_attr, dtype=dtype)
        self._scale.stop_gradient = True

        state_prefix = "{}.state".format(name) if name else 'outscale.state'
        state_attr = ParamAttr(
            name=unique_name.generate(state_prefix),
            initializer=Constant(0),
            trainable=False)
        self._state = self.create_parameter(
            shape=[1], attr=state_attr, dtype=dtype)
        self._state.stop_gradient = True

        accum_prefix = "{}.accum".format(name) if name else 'outscale.accum'
        accum_attr = ParamAttr(
            name=unique_name.generate(accum_prefix),
            initializer=Constant(0),
            trainable=False)
        self._accum = self.create_parameter(
            shape=[1], attr=accum_attr, dtype=dtype)
        self._accum.stop_gradient = True
H
huangxu96 已提交
346 347 348

    def forward(self, input):
        if in_dygraph_mode():
349 350 351 352
            attrs = ('moving_rate', self._moving_rate, 'is_test',
                     not self.training)
            state = self._state if self.training else None
            accum = self._accum if self.training else None
H
huangxu96 已提交
353 354
            quant_out = _varbase_creator(
                type=input.type,
355
                name="{}.tmp".format(input.name),
H
huangxu96 已提交
356 357 358 359
                shape=input.shape,
                dtype=input.dtype,
                persistable=False)

W
wanghuancoder 已提交
360
            out, _, _, _ = _C_ops.moving_average_abs_max_scale(
361 362
                input, accum, state, quant_out, self._scale, state, accum,
                *attrs)
H
huangxu96 已提交
363 364
            return out

365 366 367 368
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'MovingAverageAbsMaxScale')

        attrs = {'moving_rate': self._moving_rate, 'is_test': not self.training}
H
huangxu96 已提交
369 370
        inputs = {"X": [input]}
        quant_out = self._helper.create_variable(
371
            name="{}.tmp".format(input.name),
H
huangxu96 已提交
372 373 374 375
            dtype=input.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=False)
376 377 378 379 380 381 382
        outputs = {"Out": [quant_out], "OutScale": [self._scale]}

        if self.training:
            inputs['InState'] = [self._state]
            inputs['InAccum'] = [self._accum]
            outputs['OutState'] = [self._state]
            outputs['OutAccum'] = [self._accum]
H
huangxu96 已提交
383 384

        self._helper.append_op(
385
            type="moving_average_abs_max_scale",
H
huangxu96 已提交
386 387 388 389 390 391 392
            inputs=inputs,
            outputs=outputs,
            attrs=attrs)

        return quant_out


393
QuantStub = MovingAverageAbsMaxScale
394 395 396 397 398 399 400 401 402 403 404 405 406 407


class QuantizedConv2D(layers.Layer):
    """
    The computational logic of QuantizedConv2D is the same with Conv2D.
    The only difference is that its inputs are all fake quantized.
    """

    def __init__(self,
                 layer,
                 weight_bits=8,
                 activation_bits=8,
                 moving_rate=0.9,
                 weight_quantize_type='abs_max',
408 409 410 411 412
                 activation_quantize_type='abs_max',
                 weight_pre_layer=None,
                 act_pre_layer=None,
                 weight_quant_layer=None,
                 act_quant_layer=None):
413 414 415 416 417
        super(QuantizedConv2D, self).__init__()
        # For Conv2D
        self._groups = getattr(layer, '_groups')
        self._stride = getattr(layer, '_stride')
        self._padding = getattr(layer, '_padding')
H
huangxu96 已提交
418 419 420 421
        self._padding_mode = getattr(layer, '_padding_mode')
        if self._padding_mode != 'zeros':
            self._reversed_padding_repeated_twice = getattr(
                layer, '_reversed_padding_repeated_twice')
422
        self._dilation = getattr(layer, '_dilation')
H
huangxu96 已提交
423
        self._data_format = getattr(layer, '_data_format')
424 425
        self.weight = getattr(layer, 'weight')
        self.bias = getattr(layer, 'bias')
H
huangxu96 已提交
426

427
        # For FakeQuant
H
huangxu96 已提交
428
        self._conv2d_quant_axis = 0
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
        if weight_quant_layer is not None:
            self._fake_quant_weight = weight_quant_layer()
        else:
            self._fake_quant_weight = _get_fake_quant_type(
                weight_quantize_type,
                name=self.weight.name,
                moving_rate=moving_rate,
                quant_bits=weight_bits,
                dtype=self._dtype,
                quant_on_weight=True,
                channel_num=self.weight.shape[self._conv2d_quant_axis],
                quant_axis=self._conv2d_quant_axis)
        if act_quant_layer is not None:
            self._fake_quant_input = act_quant_layer()
        else:
            self._fake_quant_input = _get_fake_quant_type(
                activation_quantize_type,
                name=layer.full_name(),
                moving_rate=moving_rate,
                quant_bits=activation_bits,
                dtype=self._dtype,
                quant_on_weight=False)

        self._act_preprocess = act_pre_layer(
        ) if act_pre_layer is not None else None
        self._weight_preprocess = weight_pre_layer(
        ) if weight_pre_layer is not None else None
456 457

    def forward(self, input):
458 459
        if self._act_preprocess is not None:
            input = self._act_preprocess(input)
460
        quant_input = self._fake_quant_input(input)
461 462 463 464 465

        weight = self.weight
        if self._weight_preprocess is not None:
            weight = self._weight_preprocess(self.weight)
        quant_weight = self._fake_quant_weight(weight)
466

H
huangxu96 已提交
467 468 469 470 471 472
        if self._padding_mode != 'zeros':
            quant_input = F.pad(quant_input,
                                self._reversed_padding_repeated_twice,
                                mode=self._padding_mode,
                                data_format=self._data_format)
            self._padding = 0
473

H
huangxu96 已提交
474 475 476 477 478 479 480 481 482
        return F.conv2d(
            quant_input,
            quant_weight,
            bias=self.bias,
            padding=self._padding,
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            data_format=self._data_format)
483 484


485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
class QuantizedConv2DTranspose(layers.Layer):
    """
    The computational logic of QuantizedConv2DTranspose is the same with Conv2DTranspose.
    The only difference is that its inputs are all fake quantized.
    
    Examples:
       .. code-block:: python
          import paddle
          import paddle.nn as nn
          from paddle.nn.quant.quant_layers import QuantizedConv2DTranspose
          x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1., max=1.)
          conv = nn.Conv2DTranspose(4, 6, (3, 3))
          conv_quantized = QuantizedConv2DTranspose(conv)
          y_quantized = conv_quantized(x_var)
          y_var = conv(x_var)
          y_quantized_np = y_quantized.numpy()
          y_np = y_var.numpy()
          print(y_np.shape, y_quantized_np.shape)
          # (2, 6, 10, 10), (2, 6, 10, 10)
    """

    def __init__(self,
                 layer,
                 weight_bits=8,
                 activation_bits=8,
                 moving_rate=0.9,
                 weight_quantize_type='abs_max',
                 activation_quantize_type='abs_max',
                 weight_pre_layer=None,
                 act_pre_layer=None,
                 weight_quant_layer=None,
                 act_quant_layer=None):
        r"""
        Constructor.

        The arguments are the same as ImperativeQuantAware.
        """
        super(QuantizedConv2DTranspose, self).__init__()
        # For Conv2DTranspose
        self._groups = getattr(layer, '_groups')
        self._stride = getattr(layer, '_stride')
        self._padding = getattr(layer, '_padding')
        self._output_padding = getattr(layer, 'output_padding')
        self._dilation = getattr(layer, '_dilation')
        self._data_format = getattr(layer, '_data_format')
        self.weight = getattr(layer, 'weight')
        self.bias = getattr(layer, 'bias')
        # For FakeQuant
        self._conv2d_transpose_quant_axis = 1
        if weight_quant_layer is not None:
            self._fake_quant_weight = weight_quant_layer()
        else:
            self._fake_quant_weight = _get_fake_quant_type(
                weight_quantize_type,
                name=self.weight.name,
                moving_rate=moving_rate,
                quant_bits=weight_bits,
                dtype=self._dtype,
                quant_on_weight=True,
                channel_num=self.weight.shape[
                    self._conv2d_transpose_quant_axis],
                quant_axis=self._conv2d_transpose_quant_axis)
        if act_quant_layer is not None:
            self._fake_quant_input = act_quant_layer()
        else:
            self._fake_quant_input = _get_fake_quant_type(
                activation_quantize_type,
                name=layer.full_name(),
                moving_rate=moving_rate,
                quant_bits=activation_bits,
                dtype=self._dtype,
                quant_on_weight=False)

        self._act_preprocess = act_pre_layer(
        ) if act_pre_layer is not None else None
        self._weight_preprocess = weight_pre_layer(
        ) if weight_pre_layer is not None else None

    def forward(self, input, output_size=None):
        if self._act_preprocess is not None:
            input = self._act_preprocess(input)
        quant_input = self._fake_quant_input(input)

        weight = self.weight
        if self._weight_preprocess is not None:
            weight = self._weight_preprocess(self.weight)
        quant_weight = self._fake_quant_weight(weight)

        if output_size is None:
            output_padding = self._output_padding
        else:
            output_padding = 0

        return F.conv2d_transpose(
            quant_input,
            quant_weight,
            bias=self.bias,
            padding=self._padding,
            output_padding=output_padding,
            stride=self._stride,
            dilation=self._dilation,
            groups=self._groups,
            output_size=output_size,
            data_format=self._data_format)


591 592 593 594 595 596 597 598 599 600 601 602
class QuantizedLinear(layers.Layer):
    """
    The computational logic of QuantizedLinear is the same with Linear.
    The only difference is that its inputs are all fake quantized.
    """

    def __init__(self,
                 layer,
                 weight_bits=8,
                 activation_bits=8,
                 moving_rate=0.9,
                 weight_quantize_type='abs_max',
603 604 605 606 607
                 activation_quantize_type='abs_max',
                 weight_pre_layer=None,
                 act_pre_layer=None,
                 weight_quant_layer=None,
                 act_quant_layer=None):
608 609 610 611
        super(QuantizedLinear, self).__init__()
        # For Linear
        self.weight = getattr(layer, 'weight')
        self.bias = getattr(layer, 'bias')
H
huangxu96 已提交
612
        self.name = getattr(layer, 'name')
613
        # For FakeQuant
H
huangxu96 已提交
614
        self._linear_quant_axis = 1
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643

        if weight_quant_layer is not None:
            self._fake_quant_weight = weight_quant_layer()
        else:
            self._fake_quant_weight = _get_fake_quant_type(
                weight_quantize_type,
                name=self.weight.name,
                moving_rate=moving_rate,
                quant_bits=weight_bits,
                dtype=self._dtype,
                quant_on_weight=True,
                channel_num=self.weight.shape[self._linear_quant_axis],
                quant_axis=self._linear_quant_axis)

        if act_quant_layer is not None:
            self._fake_quant_input = act_quant_layer()
        else:
            self._fake_quant_input = _get_fake_quant_type(
                activation_quantize_type,
                name=layer.full_name(),
                moving_rate=moving_rate,
                quant_bits=activation_bits,
                dtype=self._dtype,
                quant_on_weight=False)

        self._act_preprocess = act_pre_layer(
        ) if act_pre_layer is not None else None
        self._weight_preprocess = weight_pre_layer(
        ) if weight_pre_layer is not None else None
644 645

    def forward(self, input):
646 647
        if self._act_preprocess is not None:
            input = self._act_preprocess(input)
648
        quant_input = self._fake_quant_input(input)
649 650 651 652 653 654

        weight = self.weight
        if self._weight_preprocess is not None:
            weight = self._weight_preprocess(self.weight)
        quant_weight = self._fake_quant_weight(weight)

H
huangxu96 已提交
655 656 657
        out = F.linear(
            x=quant_input, weight=quant_weight, bias=self.bias, name=self.name)
        return out
658 659


660 661 662
class MAOutputScaleLayer(layers.Layer):
    """
    Add MovingAverageMaxScale layer to the behind of the input layer.
663
    Calculate the scale (moving average abs max) for the output of the input layer.
664 665 666
    """

    def __init__(self, layer=None, moving_rate=0.9, name=None, dtype='float32'):
667
        r"""
668
        Construct
669
        """
670
        super(MAOutputScaleLayer, self).__init__()
671
        self._layer = layer
672 673 674 675 676 677 678 679 680 681 682 683
        if name is None:
            name = layer.full_name()
        self._ma_output_scale = \
            MovingAverageAbsMaxScale(name, moving_rate, dtype)

    def forward(self, *inputs, **kwargs):
        out = self._layer(*inputs, **kwargs)
        # TODO (jc): support the ops of several outputs
        if (isinstance(out, list) or isinstance(out, tuple)) and len(out) > 1:
            return out
        else:
            return self._ma_output_scale(out)
684

685 686

class FakeQuantMAOutputScaleLayer(layers.Layer):
687 688 689 690
    """
    Add FakeQuantMovingAverageAbsMax layer to the behind of the input layer.
    """

691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
    def __init__(self,
                 layer,
                 weight_bits=8,
                 activation_bits=8,
                 moving_rate=0.9,
                 name=None,
                 *args,
                 **kwargs):

        super(FakeQuantMAOutputScaleLayer, self).__init__()
        self._layer = layer
        self._fake_quant_output = _get_fake_quant_type(
            'moving_average_abs_max',
            name=layer.full_name() if name is None else name,
            moving_rate=moving_rate,
            quant_bits=activation_bits,
            dtype=self._dtype,
            quant_on_weight=False)

    def forward(self, *inputs, **kwargs):
        out = self._layer(*inputs, **kwargs)
        # TODO (jc): support the ops of several outputs
        if (isinstance(out, list) or isinstance(out, tuple)) and len(out) > 1:
            return out
        else:
            return self._fake_quant_output(out)
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743


def _get_fake_quant_type(quant_type, **kwargs):
    call_args = {
        "name": kwargs.get("name", None),
        "quant_bits": kwargs.get("quant_bits", 8),
        "dtype": kwargs.get("dtype", "float32")
    }

    if quant_type == 'abs_max':
        call_args["quant_on_weight"] = kwargs.get("quant_on_weight", False)
    elif quant_type == 'moving_average_abs_max':
        call_args["moving_rate"] = kwargs.get("moving_rate", 0.9)
    elif quant_type == 'channel_wise_abs_max':
        call_args["quant_on_weight"] = kwargs.get("quant_on_weight", False)
        call_args["channel_num"] = kwargs.get("channel_num", None)
        call_args["quant_axis"] = kwargs.get("quant_axis", 0)
        assert call_args["channel_num"] is not None, (
            "You need to input channel_num"
            "when you use channel_wise_abs_max strategy.")
    fake_quant_map = {
        'abs_max': FakeQuantAbsMax,
        'moving_average_abs_max': FakeQuantMovingAverageAbsMax,
        'channel_wise_abs_max': FakeQuantChannelWiseAbsMax
    }

    return fake_quant_map[quant_type](**call_args)