conv_op.h 3.2 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
#include <string>
#include <vector>
#include "paddle/fluid/lite/core/compatible_tensor.h"
#include "paddle/fluid/lite/core/kernel.h"
#include "paddle/fluid/lite/core/op_lite.h"
#include "paddle/fluid/lite/core/scope.h"
#include "paddle/fluid/lite/operators/op_params.h"
#include "paddle/fluid/lite/utils/all.h"

namespace paddle {
namespace lite {
namespace operators {

class ConvOpLite : public OpLite {
 public:
  ConvOpLite() {}

33
  explicit ConvOpLite(const std::string& type) : OpLite(type) {}
T
tensor-tang 已提交
34 35 36 37 38 39

  bool CheckShape() const override;

  bool InferShape() const override;

  // TODO(Superjomn) replace framework::OpDesc with a lite one.
40 41 42 43 44 45 46 47 48
  bool AttachImpl(const cpp::OpDesc& op_desc, lite::Scope* scope) override {
    auto X = op_desc.Input("Input").front();
    auto Filter = op_desc.Input("Filter").front();
    auto Out = op_desc.Output("Output").front();

    param_.x = scope->FindVar(X)->GetMutable<lite::Tensor>();
    param_.filter = scope->FindVar(Filter)->GetMutable<lite::Tensor>();
    param_.output = scope->FindVar(Out)->GetMutable<lite::Tensor>();

T
tensor-tang 已提交
49 50 51 52
    param_.strides = op_desc.GetAttr<std::vector<int>>("strides");
    param_.paddings = op_desc.GetAttr<std::vector<int>>("paddings");
    param_.groups = op_desc.GetAttr<int>("groups");
    param_.dilations = op_desc.GetAttr<std::vector<int>>("dilations");
53

T
tensor-tang 已提交
54 55 56 57
    // optional params
    std::vector<std::string> input_arg_names = op_desc.InputArgumentNames();
    if (std::find(input_arg_names.begin(), input_arg_names.end(), "Bias") !=
        input_arg_names.end()) {
58
      auto bias_arguments = op_desc.Input("Bias");
59
      if (bias_arguments.size() > 0) {
60 61
        auto bias_var = scope->FindVar(bias_arguments.front());
        if (bias_var != nullptr) {
62
          param_.bias =
63
              const_cast<lite::Tensor*>(&(bias_var->Get<lite::Tensor>()));
64
        }
T
tensor-tang 已提交
65 66
      }
    }
67 68
    if (std::find(input_arg_names.begin(), input_arg_names.end(),
                  "ResidualData") != input_arg_names.end()) {
69 70 71
      auto res_data_arguments = op_desc.Input("ResidualData");
      if (res_data_arguments.size() > 0) {
        auto residual_data_var = scope->FindVar(res_data_arguments.front());
72
        if (residual_data_var != nullptr) {
73
          param_.residualData = const_cast<lite::Tensor*>(
74
              &(residual_data_var->Get<lite::Tensor>()));
75
        }
T
tensor-tang 已提交
76 77
      }
    }
78
    param_.fuse_relu = op_desc.GetAttr<bool>("fuse_relu");
T
tensor-tang 已提交
79 80 81
    return true;
  }

82
  void AttachKernel(KernelBase* kernel) override { kernel->SetParam(param_); }
T
tensor-tang 已提交
83

T
tensor-tang 已提交
84
  std::string DebugString() const override { return "conv2d"; }
T
tensor-tang 已提交
85 86 87 88 89 90 91 92

 private:
  mutable ConvParam param_;
};

}  // namespace operators
}  // namespace lite
}  // namespace paddle