graph.cc 7.4 KB
Newer Older
X
Xin Pan 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
X
start  
Xin Pan 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

X
Xin Pan 已提交
15
#include <algorithm>
16 17
#include <memory>
#include <string>
18
#include <unordered_map>
19 20
#include <unordered_set>
#include <vector>
X
Xin Pan 已提交
21

X
start  
Xin Pan 已提交
22
#include "paddle/fluid/framework/ir/graph.h"
X
Xin Pan 已提交
23
#include "paddle/fluid/framework/op_proto_maker.h"
24
#include "paddle/fluid/framework/operator.h"
25 26
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/var_desc.h"
X
start  
Xin Pan 已提交
27 28

namespace paddle {
X
Xin Pan 已提交
29
namespace framework {
X
Xin Pan 已提交
30
namespace ir {
X
Xin Pan 已提交
31

X
clean  
Xin Pan 已提交
32
Graph::Graph(const ProgramDesc &program) : program_(program) {
33 34 35
  auto var_nodes = InitFromProgram(program_);
  ResolveHazard(var_nodes);
}
36

37 38
std::map<std::string, std::vector<ir::Node *>> Graph::InitFromProgram(
    const ProgramDesc &program) {
M
minqiyang 已提交
39
  VLOG(3) << "block in program:" << program_.Size();
40
  std::unordered_map<std::string, VarDesc *> all_vars;
41 42
  // var nodes for each var name, will have multiple versions in SSA
  std::map<std::string, std::vector<ir::Node *>> var_nodes;
43 44 45 46 47
  for (auto *var : program.Block(0).AllVars()) {
    all_vars.emplace(var->Name(), var);
  }

  for (auto *op : program.Block(0).AllOps()) {
X
clean  
Xin Pan 已提交
48
    ir::Node *node = CreateOpNode(op);
X
Xin Pan 已提交
49 50
    // For input args, reuse the same var name if it was created before.
    // Otherwise, create a new one.
51 52
    for (auto &each_var_name : op->InputArgumentNames()) {
      ir::Node *var = nullptr;
X
Xin Pan 已提交
53
      if (var_nodes.find(each_var_name) != var_nodes.end()) {
X
Xin Pan 已提交
54
        var = var_nodes.at(each_var_name).back();
X
Xin Pan 已提交
55
      } else if (all_vars.count(each_var_name) != 0) {
X
clean  
Xin Pan 已提交
56
        var = CreateVarNode(all_vars.at(each_var_name));
X
Xin Pan 已提交
57
        var_nodes[each_var_name].push_back(var);
58
      } else {
X
Xin Pan 已提交
59 60 61
        // Operation input var can be optional (dispensable). Which means
        // the operation doesn't really need the var at runtime. In this
        // case, the no-existed var is ready at the beginning.
X
polish  
Xin Pan 已提交
62
        var = CreateEmptyNode(each_var_name, ir::Node::Type::kVariable);
X
Xin Pan 已提交
63
        var_nodes[each_var_name].push_back(var);
64 65 66 67
      }
      node->inputs.push_back(var);
      var->outputs.push_back(node);
    }
X
Xin Pan 已提交
68
    // For output args, always create a new var.
69
    std::unordered_set<std::string> out_arg_set;
70
    for (auto &each_var_name : op->OutputArgumentNames()) {
71 72 73 74 75 76 77 78
      if (each_var_name != kEmptyVarName) {
        PADDLE_ENFORCE(out_arg_set.count(each_var_name) == 0,
                       "Program is wrong. %s occurs in output of %s several "
                       "times.",
                       each_var_name, op->Type());
        out_arg_set.insert(each_var_name);
      }

X
Xin Pan 已提交
79 80 81 82 83 84 85 86 87
      ir::Node *var = nullptr;
      if (all_vars.count(each_var_name) != 0) {
        var = CreateVarNode(all_vars.at(each_var_name));
      } else {
        // Operation output vars can be @EMPTY@. For example, while_grad
        // can have multi @EMPTY@ outputs with no VarDesc.
        // TODO(panyx0718): Add a test.
        var = CreateEmptyNode(each_var_name, ir::Node::Type::kVariable);
      }
X
Xin Pan 已提交
88
      var_nodes[each_var_name].push_back(var);
89 90 91 92
      node->outputs.push_back(var);
      var->inputs.push_back(node);
    }
  }
X
polish  
Xin Pan 已提交
93
  Set<const std::vector<OpDesc *>>(
X
Xin Pan 已提交
94
      details::kStaleProgramOpDescs,
X
polish  
Xin Pan 已提交
95
      new std::vector<OpDesc *>(program.Block(0).AllOps()));
G
Gabor Buella 已提交
96
  return var_nodes;
97
}
X
Xin Pan 已提交
98

99 100
void Graph::ResolveHazard(
    const std::map<std::string, std::vector<ir::Node *>> &var_nodes) {
X
polish  
Xin Pan 已提交
101
  /**
102 103 104 105 106
   * We should handle write after read(WAR) and write after write(WAW) here.
   * Because some of the operators of the program can be executed parallelly.
   * So, to make the program running in the right order, we should add the
   * dependence of WAR and WAW.
   *
X
polish  
Xin Pan 已提交
107 108 109
   *
   * https://en.wikipedia.org/wiki/Hazard_(computer_architecture)#Write_after_read_(WAR)
   */
X
Xin Pan 已提交
110

X
Xin Pan 已提交
111 112 113 114 115 116 117 118
  for (auto &var : var_nodes) {
    auto &versions = var.second;
    if (versions.size() <= 1) continue;

    auto it_new = versions.rbegin();
    auto it_old = versions.rbegin();
    ++it_old;
    for (; it_old != versions.rend(); it_new = it_old, ++it_old) {
M
minqiyang 已提交
119
      VLOG(3) << "deal with var: " << (*it_new)->Name();
X
Xin Pan 已提交
120 121 122 123
      ir::Node *write_op =
          (*it_new)->inputs.empty() ? nullptr : (*it_new)->inputs[0];
      const auto &read_ops = (*it_old)->outputs;

D
dzhwinter 已提交
124 125 126 127
      PADDLE_ENFORCE(
          write_op,
          string::Sprintf("The write_op of var %s should not be empty.",
                          (*it_new)->Name()));
128 129 130 131

      // Add write after write dependence
      ir::Node *upstream_op =
          (*it_old)->inputs.empty() ? nullptr : (*it_old)->inputs[0];
X
Xin Pan 已提交
132 133
      // TODO(zcd): Add a test.
      if (upstream_op && upstream_op != write_op) {
134 135 136 137 138 139 140
        ir::Node *dep_var = CreateControlDepVar();
        write_op->inputs.push_back(dep_var);
        upstream_op->outputs.push_back(dep_var);
        dep_var->outputs.push_back(write_op);
        dep_var->inputs.push_back(upstream_op);
      }

X
Xin Pan 已提交
141 142 143 144 145 146
      for (auto *read_op : read_ops) {
        // Manually add a dependency var from read_op to write_op;
        if (read_op == write_op) {
          // Read Write is the same op.
          continue;
        }
X
Xin Pan 已提交
147 148 149 150 151 152 153 154 155 156 157
        // 2 ops might have been connected via other vars.
        bool has_dep = false;
        for (ir::Node *r_out : read_op->outputs) {
          for (ir::Node *w_in : write_op->inputs) {
            if (r_out == w_in) {
              has_dep = true;
              break;
            }
          }
        }
        if (has_dep) continue;
X
Xin Pan 已提交
158

X
Xin Pan 已提交
159
        ir::Node *dep_var = CreateControlDepVar();
X
Xin Pan 已提交
160 161 162 163 164 165 166
        read_op->outputs.push_back(dep_var);
        dep_var->inputs.push_back(read_op);
        write_op->inputs.push_back(dep_var);
        dep_var->outputs.push_back(write_op);
      }
    }
  }
X
better  
Xin Pan 已提交
167
}
X
Xin Pan 已提交
168

169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
std::shared_ptr<Graph> Graph::Clone() {
  auto cloned_graph = std::make_shared<Graph>(this->program_);
  cloned_graph->ReleaseNodes();
  cloned_graph->num_node_created_ = 0;
  std::unordered_map<ir::Node *, ir::Node *> origin_to_cloned;
  for (auto *n : this->node_set_) {
    ir::Node *cloned_node = nullptr;
    if (n->IsCtrlVar()) {
      cloned_node = cloned_graph->CreateControlDepVar();
    } else if (!n->var_desc_ && !n->op_desc_) {  // empty node
      cloned_node = cloned_graph->CreateEmptyNode(n->Name(), n->NodeType());
    } else if (n->IsVar()) {
      cloned_node = cloned_graph->CreateVarNode(n->Var());
    } else if (n->IsOp()) {
      cloned_node = cloned_graph->CreateOpNode(n->Op());
    }
    if (cloned_node) {
      origin_to_cloned[n] = cloned_node;
    } else {
      PADDLE_THROW("The cloned node's type is not supported!");
    }
  }
  for (auto *n : this->node_set_) {
    for (auto it = n->inputs.begin(); it != n->inputs.end(); it++) {
      origin_to_cloned[n]->inputs.push_back(origin_to_cloned[*it]);
    }
    for (auto it = n->outputs.begin(); it != n->outputs.end(); it++) {
      origin_to_cloned[n]->outputs.push_back(origin_to_cloned[*it]);
    }
  }
  return cloned_graph;
}

X
Xin Pan 已提交
202 203 204
bool IsControlDepVar(const ir::Node &var) {
  return var.Name().find(ir::Node::kControlDepVarName) != std::string::npos;
}
X
Xin Pan 已提交
205
}  // namespace ir
X
Xin Pan 已提交
206
}  // namespace framework
X
start  
Xin Pan 已提交
207
}  // namespace paddle