multi_devices_graph_pass.cc 35.1 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
C
chengduoZH 已提交
14
#include <algorithm>
Y
Yancey1989 已提交
15
#include <fstream>
C
chengduoZH 已提交
16
#include <string>
C
chengduoZH 已提交
17
#include <utility>
C
chengduoZH 已提交
18 19
#include <vector>

20
#include "paddle/fluid/framework/details/all_reduce_op_handle.h"
C
chengduoZH 已提交
21
#include "paddle/fluid/framework/details/broadcast_op_handle.h"
Y
Yu Yang 已提交
22
#include "paddle/fluid/framework/details/computation_op_handle.h"
23
#include "paddle/fluid/framework/details/data_balance_op_handle.h"
24
#include "paddle/fluid/framework/details/fused_broadcast_op_handle.h"
X
Xin Pan 已提交
25
#include "paddle/fluid/framework/details/multi_devices_graph_pass.h"
C
chengduoZH 已提交
26
#include "paddle/fluid/framework/details/reduce_op_handle.h"
Y
Yancey1989 已提交
27
#include "paddle/fluid/framework/details/rpc_op_handle.h"
Y
Yu Yang 已提交
28
#include "paddle/fluid/framework/details/scale_loss_grad_op_handle.h"
X
better  
Xin Pan 已提交
29
#include "paddle/fluid/framework/ir/graph_helper.h"
X
Xin Pan 已提交
30
#include "paddle/fluid/framework/ir/node.h"
Y
Fix bug  
yuyang18 已提交
31
#include "paddle/fluid/framework/op_info.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/scope.h"
Y
Yu Yang 已提交
33

Y
Yu Yang 已提交
34 35 36
namespace paddle {
namespace framework {
namespace details {
X
Xin Pan 已提交
37

X
Xin Pan 已提交
38
namespace {
X
Xin Pan 已提交
39
// TODO(panyx0718): Clean this up as well.
X
Xin Pan 已提交
40 41 42 43 44
// all operators. NOTE that even we use a vector here, the operators is
// unordered.
typedef std::vector<OpHandleBase *> GraphOps;
const char kGraphOps[] = "ops";

X
Xin Pan 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
void PolishGraphToSupportDataHazards(ir::Graph *graph) {
  for (auto &var_map : graph->Get<GraphVars>(kGraphVars)) {
    for (auto &name_pair : var_map) {
      if (name_pair.second.size() <= 1) {
        continue;
      }
      auto it_new = name_pair.second.rbegin();
      auto it_old = name_pair.second.rbegin();
      ++it_old;
      for (; it_old != name_pair.second.rend(); it_new = it_old, ++it_old) {
        OpHandleBase *write_op = (*it_new)->GeneratedOp();
        const auto &read_ops = (*it_old)->PendingOps();

        for (auto *read_op : read_ops) {
          // Manually add a dependency var from read_op to write_op;
          if (read_op == write_op) {
            // Read Write is the same op.
            continue;
          }
          bool has_dep = false;
          for (auto *r_out : read_op->Outputs()) {
            for (auto *w_in : write_op->Inputs()) {
              if (r_out->Node() == w_in->Node()) {
                has_dep = true;
                break;
              }
            }
          }
          if (has_dep) continue;

          auto *dep_var = new DummyVarHandle(graph->CreateControlDepVar());
          read_op->AddOutput(dep_var);
          write_op->AddInput(dep_var);
          graph->Get<GraphDepVars>(kGraphDepVars).emplace(dep_var);
        }
      }
    }
  }
}

VarHandle *CreateOrGetLatestVarHandle(ir::Graph *graph, ir::Node *node,
                                      const platform::Place &place,
                                      size_t place_offset) {
  auto &var_holders = graph->Get<GraphVars>(kGraphVars)[place_offset];
  auto &var_holder = var_holders[node->Name()];
  VarHandle *var = nullptr;
  if (var_holder.empty()) {
    if (node->Var()) {
      var = new VarHandle(graph->CreateVarNode(node->Var()), 0, place_offset,
                          node->Name(), place);
    } else {
      var = new VarHandle(
          graph->CreateEmptyNode(node->Name(), ir::Node::Type::kVariable), 0,
          place_offset, node->Name(), place);
    }
    var_holder.emplace_back(var);
  } else {
X
clean1  
Xin Pan 已提交
102
    var = *var_holder.rbegin();
X
Xin Pan 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
  }
  return var;
}

void CreateOpOutput(ir::Graph *graph, OpHandleBase *op_handle,
                    ir::Node *new_node, const platform::Place &place,
                    size_t place_offset) {
  auto &vars =
      graph->Get<GraphVars>(kGraphVars)[place_offset][new_node->Name()];
  size_t version = vars.size();
  auto var =
      new VarHandle(new_node, version, place_offset, new_node->Name(), place);
  vars.emplace_back(var);
  op_handle->AddOutput(var);
}

void AddOutputToLeafOps(ir::Graph *graph) {
  for (auto &op : graph->Get<GraphOps>(kGraphOps)) {
    if (!op->Outputs().empty()) {
      continue;
    }
    auto *dummy_leaf = new DummyVarHandle(graph->CreateControlDepVar());
    graph->Get<GraphDepVars>(kGraphDepVars).emplace(dummy_leaf);
    op->AddOutput(dummy_leaf);
  }
}
}  // namespace
Y
Yu Yang 已提交
130

X
Xin Pan 已提交
131 132 133 134 135
static const char kLossVarName[] = "loss_var_name";
static const char kPlaces[] = "places";
static const char kParams[] = "params";
static const char kLocalScopes[] = "local_scopes";
static const char kStrategy[] = "strategy";
136
static const char kNumTrainers[] = "num_trainers";
X
Xin Pan 已提交
137

X
Xin Pan 已提交
138
void MultiDevSSAGraphBuilder::Init() const {
X
clean  
Xin Pan 已提交
139 140 141
  all_vars_.clear();
  balance_vars_.clear();

X
Xin Pan 已提交
142 143 144 145
  loss_var_name_ = Get<const std::string>(kLossVarName);
  places_ = Get<const std::vector<platform::Place>>(kPlaces);
  local_scopes_ = Get<const std::vector<Scope *>>(kLocalScopes);
  strategy_ = Get<const BuildStrategy>(kStrategy);
P
peizhilin 已提交
146
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
X
Xin Pan 已提交
147
  nccl_ctxs_ = &Get<platform::NCCLContextMap>("nccl_ctxs");
Y
Yu Yang 已提交
148
#endif
X
Xin Pan 已提交
149

X
Xin Pan 已提交
150
  for (auto &p : Get<const std::unordered_set<std::string>>(kParams)) {
Y
Yu Yang 已提交
151 152
    grad_names_.insert(GradVarName(p));
  }
Y
Yancey1989 已提交
153
  balance_vars_.resize(places_.size(), 0);
Y
yuyang18 已提交
154 155 156 157 158
  if (strategy_.enable_data_balance_ && places_.size() == 1) {
    LOG(WARNING) << "It is no need to enable data balance when there is only "
                    "one place. enable_data_balance is set to False.";
    strategy_.enable_data_balance_ = false;
  }
Y
Yu Yang 已提交
159 160
}

X
Xin Pan 已提交
161 162
void MultiDevSSAGraphBuilder::CreateOpHandleIOs(ir::Graph *result,
                                                ir::Node *node,
Y
Yu Yang 已提交
163 164
                                                size_t place_id) const {
  auto p = places_[place_id];
X
clean1  
Xin Pan 已提交
165
  auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
X
Xin Pan 已提交
166 167
  op_handle->SetDeviceContext(p,
                              platform::DeviceContextPool::Instance().Get(p));
T
wip  
typhoonzero 已提交
168

169 170
  for (ir::Node *input : node->inputs) {
    VarHandle *var = CreateOrGetLatestVarHandle(result, input, p, place_id);
T
wip  
typhoonzero 已提交
171 172 173
    op_handle->AddInput(var);
  }

174
  for (ir::Node *output : node->outputs) {
X
polish  
Xin Pan 已提交
175 176 177 178 179 180 181 182
    ir::Node *new_node = nullptr;
    if (output->Var()) {
      new_node = result->CreateVarNode(output->Var());
    } else {
      new_node =
          result->CreateEmptyNode(output->Name(), ir::Node::Type::kVariable);
    }
    CreateOpOutput(result, op_handle, new_node, p, place_id);
T
wip  
typhoonzero 已提交
183 184
  }
}
Y
fix pe  
Yancey1989 已提交
185 186

std::vector<std::string> MultiDevSSAGraphBuilder::FindDistTrainSendVars(
X
Xin Pan 已提交
187
    const std::vector<ir::Node *> &nodes) const {
Y
fix pe  
Yancey1989 已提交
188
  std::vector<std::string> send_vars;
Y
Yancey1989 已提交
189 190
  // since parameters are all in block 0,
  // it's enough to only scan send ops in block 0
191 192
  for (auto &node : nodes) {
    OpDesc *op = node->Op();
Y
Yancey1989 已提交
193 194
    // TODO(Yancey1989): use a graceful method to find send op,
    // instead of the the hard code string
195
    if (op->Type() == "send") {
Y
fix pe  
Yancey1989 已提交
196 197 198 199 200 201 202 203 204 205
      auto op_vars = op->InputArgumentNames();
      send_vars.reserve(send_vars.size() +
                        std::distance(op_vars.begin(), op_vars.end()));
      send_vars.insert(send_vars.end(), op_vars.begin(), op_vars.end());
    }
  }
  return send_vars;
}

std::vector<std::string> MultiDevSSAGraphBuilder::FindDistTrainRecvVars(
X
Xin Pan 已提交
206
    const std::vector<ir::Node *> &nodes) const {
Y
fix pe  
Yancey1989 已提交
207
  std::vector<std::string> recv_vars;
208 209
  for (auto &node : nodes) {
    OpDesc *op = node->Op();
Y
Yancey1989 已提交
210 211 212
    // TODO(Yancey1989): use a graceful method to find recv op,
    // instead of the hard code string
    if (op->Type() == "recv") {
Y
fix pe  
Yancey1989 已提交
213 214 215 216 217 218 219 220 221
      auto op_vars = op->OutputArgumentNames();
      recv_vars.reserve(recv_vars.size() +
                        std::distance(op_vars.begin(), op_vars.end()));
      recv_vars.insert(recv_vars.end(), op_vars.begin(), op_vars.end());
    }
  }
  return recv_vars;
}

Y
Yancey1989 已提交
222 223 224 225
size_t MultiDevSSAGraphBuilder::GetAppropriateDeviceID(
    const std::vector<std::string> &var_names) const {
  int64_t numel_sum = 0;
  for (auto var_name : var_names) {
X
Xin Pan 已提交
226
    if (all_vars_.find(var_name) == all_vars_.end()) continue;
Y
Yancey1989 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
    auto var_desc = all_vars_.at(var_name);
    PADDLE_ENFORCE_NOT_NULL(var_desc);
    auto dim = framework::make_ddim(var_desc->GetShape());
    int64_t numel = framework::product(dim);
    PADDLE_ENFORCE_GT(numel, 0);
    numel_sum += numel;
  }

  auto smallest =
      std::min_element(std::begin(balance_vars_), std::end(balance_vars_));
  size_t dev_id =
      static_cast<size_t>(std::distance(std::begin(balance_vars_), smallest));
  balance_vars_[dev_id] += numel_sum;
  return dev_id;
}

X
better  
Xin Pan 已提交
243 244 245 246 247
// Topology sort the graph nodes from inputs to outputs.
// Since SSAGraphBuilder depends on forward/backward nodes to assign devices
// to parameter/gradients before optimizer ops, topo sort is insufficient. (
// some optimizer ops might not depend on any nodes), we manually move all
// optimizer nodes after last backward nodes.
X
Xin Pan 已提交
248 249 250
// However, the assumption by SSAGraphBuilder should be relaxed in the future.
std::vector<ir::Node *> SortOpsAndDelayOptimizeOp(const ir::Graph &graph) {
  std::vector<ir::Node *> ret = ir::TopologySortOperations(graph);
X
better  
Xin Pan 已提交
251 252 253 254 255
  size_t last_backward = 0;
  for (size_t i = 0; i < ret.size(); ++i) {
    if (boost::get<int>(
            ret[i]->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) ==
        static_cast<int>(OpRole::kBackward)) {
X
Xin Pan 已提交
256
      last_backward = i;
X
better  
Xin Pan 已提交
257 258 259
    }
  }

X
Xin Pan 已提交
260 261 262 263
  std::vector<ir::Node *> optimize_ops;
  std::vector<ir::Node *> sorted_ret;
  for (size_t i = 0; i < ret.size(); ++i) {
    if (i < last_backward) {
X
Xin Pan 已提交
264 265 266
      if (static_cast<bool>(boost::get<int>(ret[i]->Op()->GetAttr(
                                OpProtoAndCheckerMaker::OpRoleAttrName())) &
                            static_cast<int>(OpRole::kOptimize))) {
X
Xin Pan 已提交
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
        optimize_ops.push_back(ret[i]);
      } else {
        sorted_ret.push_back(ret[i]);
      }
    } else if (i == last_backward) {
      sorted_ret.push_back(ret[i]);
      // Verify that no operations before optimize ops depends on optimize ops.
      std::unordered_set<ir::Node *> optimize_set(optimize_ops.begin(),
                                                  optimize_ops.end());
      for (ir::Node *n : sorted_ret) {
        for (ir::Node *in : n->inputs) {
          for (ir::Node *pre_n : in->inputs) {
            PADDLE_ENFORCE(optimize_set.find(pre_n) == optimize_set.end(),
                           "optimize operations cannot be depended by forward "
                           "or backward node %s -> %s",
                           pre_n->Name(), n->Name());
          }
        }
X
Xin Pan 已提交
285
      }
X
Xin Pan 已提交
286 287 288 289
      sorted_ret.insert(sorted_ret.end(), optimize_ops.begin(),
                        optimize_ops.end());
    } else {
      sorted_ret.push_back(ret[i]);
X
Xin Pan 已提交
290 291
    }
  }
X
better  
Xin Pan 已提交
292 293 294
  return sorted_ret;
}

X
Xin Pan 已提交
295
std::unique_ptr<ir::Graph> MultiDevSSAGraphBuilder::ApplyImpl(
X
Xin Pan 已提交
296
    std::unique_ptr<ir::Graph> graph) const {
X
Xin Pan 已提交
297
  Init();
X
Xin Pan 已提交
298
  // Give the topology sort order and rebuild the graph structure.
X
better  
Xin Pan 已提交
299
  std::vector<ir::Node *> sorted_ops = SortOpsAndDelayOptimizeOp(*graph);
X
Xin Pan 已提交
300 301
  auto nodes = graph->ReleaseNodes();
  ir::Graph &result = *graph;
302

303
  int num_trainers = Get<int>(kNumTrainers);
304

305
  for (auto &node : nodes) {
X
Xin Pan 已提交
306
    if (node->IsVar() && node->Var()) {
X
Xin Pan 已提交
307
      all_vars_.emplace(node->Name(), node->Var());
308
    }
C
fix ci  
chengduoZH 已提交
309
  }
C
chengduoZH 已提交
310
  std::unordered_set<std::string> og_has_been_broadcast;
Y
Yu Yang 已提交
311 312

  // We cannot invoke resize. It is a bug of GCC 4.8
X
Xin Pan 已提交
313 314 315
  result.Set(kGraphVars, new GraphVars(places_.size()));
  result.Set(kGraphDepVars, new GraphDepVars);
  result.Set(kGraphOps, new GraphOps);
316

Y
fix pe  
Yancey1989 已提交
317
  // find send/recv vars so that we can place the distributed training
318
  // related op in the place 0
X
Xin Pan 已提交
319 320
  auto send_vars = FindDistTrainSendVars(sorted_ops);
  auto recv_vars = FindDistTrainRecvVars(sorted_ops);
T
typhoonzero 已提交
321

C
chengduoZH 已提交
322 323 324
  std::vector<std::unordered_set<std::string>> bcast_var_name_set;
  bcast_var_name_set.resize(places_.size());

C
chengduoZH 已提交
325
  size_t cur_device_id = 0;
Y
Yu Yang 已提交
326
  bool is_forwarding = true;
Y
Yancey1989 已提交
327
  bool is_dist_train = false;
328

X
Xin Pan 已提交
329 330
  std::unordered_map<std::string, int> sharded_var_device;

X
better  
Xin Pan 已提交
331
  for (ir::Node *node : sorted_ops) {
Y
Yancey1989 已提交
332
    if (boost::get<int>(
333
            node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) ==
Y
Yancey1989 已提交
334
        static_cast<int>(OpRole::kRPC)) {
X
Xin Pan 已提交
335
      int op_dev_id = CreateRPCOp(&result, node, &sharded_var_device);
Y
Yancey1989 已提交
336 337 338 339 340 341 342 343 344 345 346 347
      PADDLE_ENFORCE(op_dev_id != -1,
                     "Can not schedule the RPC operator to the right place.");
      if (node->Op()->Type() == "recv") {
        auto recv_vars_attr =
            boost::get<std::vector<std::string>>(node->Op()->GetNullableAttr(
                OpProtoAndCheckerMaker::OpRoleVarAttrName()));
        PADDLE_ENFORCE(recv_vars_attr.size() == 2UL);  // [parameter, gradient]
        if (recv_vars_attr[0].find(".block") == std::string::npos) {
          bcast_var_name_set[op_dev_id].emplace(recv_vars_attr[0]);
        }
      }
      is_dist_train = true;
348 349 350
    } else if (boost::get<int>(node->Op()->GetAttr(
                   OpProtoAndCheckerMaker::OpRoleAttrName())) ==
               static_cast<int>(OpRole::kDist)) {
X
Xin Pan 已提交
351
      int op_dev_id = CreateDistTrainOp(&result, node, &sharded_var_device);
Y
Yancey1989 已提交
352 353 354 355
      if (node->Op()->Type() == "concat") {
        auto origin_param_name = node->Op()->OutputArgumentNames()[0];
        bcast_var_name_set[op_dev_id].emplace(origin_param_name);
      }
X
Xin Pan 已提交
356
    } else if (IsScaleLossOp(node)) {
Y
Yu Yang 已提交
357
      // user can customize loss@grad if not use_default_grad_scale_
Y
yuyang18 已提交
358 359
      if (strategy_.gradient_scale_ !=
          BuildStrategy::GradientScaleStrategy::kCustomized) {
X
Xin Pan 已提交
360
        // TODO(paddle-dev): Why is there no input for this op_handle?
361
        auto loss_grad_name = node->Op()->OutputArgumentNames()[0];
362
        CreateScaleLossGradOp(&result, loss_grad_name, node->outputs[0]);
Y
Yu Yang 已提交
363
      }
364 365 366 367
      // This assumes the backward generating code will ensure IsScaleLossOp
      // is true only for the op that scale the final scalar loss.
      // It also assumes backward op will always follow the forward op in
      // the block.
Y
Yu Yang 已提交
368
      is_forwarding = false;
Y
Yu Yang 已提交
369
    } else {
X
Xin Pan 已提交
370
      int op_dev_id = GetOpDeviceID(result, node, sharded_var_device);
C
chengduo 已提交
371
      if (op_dev_id != -1) {  // This op only runs on one specific device.
X
Xin Pan 已提交
372
        CreateComputationalOp(&result, node, op_dev_id);
373
        for (ir::Node *n : node->outputs) {
X
Xin Pan 已提交
374
          sharded_var_device.emplace(n->Name(), op_dev_id);
C
chengduoZH 已提交
375
        }
C
chengduo 已提交
376 377 378
      } else {
        // This op runs on all devices, and its output may have parameter's
        // gradients.
X
Xin Pan 已提交
379
        // TODO(paddle-dev): Why is so special about "read" op?
380 381
        if (node->Op()->Type() == "read" && strategy_.enable_data_balance_) {
          node->Op()->SetAttr("throw_eof_exp", false);
X
Xin Pan 已提交
382
          CreateComputationalOps(&result, node, places_.size());
383
          const auto &data_var_names = node->Op()->Output("Out");
384
          InsertDataBalanceOp(&result, data_var_names);
F
fengjiayi 已提交
385
        } else {
X
Xin Pan 已提交
386
          CreateComputationalOps(&result, node, places_.size());
387 388
        }

Y
Yancey1989 已提交
389 390 391 392
// insert synchronous ops at the backpropagation; and
// insert synchronous ops if the graph contains mutilple places.

#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
393 394 395
        if (!is_forwarding &&
            (places_.size() > 1 || num_trainers > 1 ||
             (nccl_ctxs_ && nccl_ctxs_->contexts_.size() > 1))) {
Y
Yancey1989 已提交
396 397 398
#else
        if (!is_forwarding && (places_.size() > 1 || num_trainers > 1)) {
#endif
C
chengduo 已提交
399 400
          // Currently, we assume that once gradient is generated, it can be
          // broadcast, and each gradient is only broadcast once.
401
          if (static_cast<bool>(boost::get<int>(node->Op()->GetAttr(
C
chengduo 已提交
402 403 404
                                    OpProtoAndCheckerMaker::OpRoleAttrName())) &
                                static_cast<int>(OpRole::kBackward))) {
            try {
405 406
              auto backward_vars = boost::get<std::vector<std::string>>(
                  node->Op()->GetNullableAttr(
C
chengduo 已提交
407
                      OpProtoAndCheckerMaker::OpRoleVarAttrName()));
Y
yuyang18 已提交
408

C
chengduo 已提交
409
              PADDLE_ENFORCE_EQ(backward_vars.size() % 2, 0);
Y
yuyang18 已提交
410

C
chengduo 已提交
411 412 413
              for (size_t i = 0; i < backward_vars.size(); i += 2) {
                auto &p_name = backward_vars[i];
                auto &g_name = backward_vars[i + 1];
M
minqiyang 已提交
414
                VLOG(10) << "Bcast " << g_name << " for parameter " << p_name;
Y
yuyang18 已提交
415

C
chengduo 已提交
416 417 418 419
                switch (strategy_.reduce_) {
                  case BuildStrategy::ReduceStrategy::kReduce:
                    cur_device_id = GetAppropriateDeviceID({g_name});
                    CreateReduceOp(&result, g_name, cur_device_id);
X
Xin Pan 已提交
420
                    sharded_var_device.emplace(g_name, cur_device_id);
Y
Yancey1989 已提交
421 422 423
                    if (!is_dist_train) {
                      bcast_var_name_set[cur_device_id].emplace(p_name);
                    }
C
chengduo 已提交
424 425 426 427 428 429 430 431 432 433 434 435 436
                    break;
                  case BuildStrategy::ReduceStrategy::kAllReduce:
                    if (IsSparseGradient(g_name)) {
                      CreateReduceOp(&result, g_name, 0);
                      CreateBroadcastOp(&result, g_name, 0);
                    } else {
                      InsertAllReduceOp(&result, g_name);
                    }
                    break;
                  default:
                    LOG(FATAL) << "Unknown reduce strategy ";
                    break;
                }
Y
yuyang18 已提交
437
              }
C
chengduo 已提交
438
            } catch (boost::bad_get e) {
C
chengduoZH 已提交
439
            }
Y
Yu Yang 已提交
440 441 442 443 444
          }
        }
      }
    }
  }
445
  bool use_gpu = false;
P
peizhilin 已提交
446
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
447 448 449
  use_gpu = nccl_ctxs_ != nullptr;
#endif

Y
Yancey1989 已提交
450 451 452 453 454
  // Insert broadcast operators principle:
  // 1. Broadcast optimized parameters in Reduce strategy;
  // 2. No need broadcast optimized parameters in AllReduce strategy because of
  //    the optimization sub-graph would be run on every GPU;
  // 3. Allways broadcast received parameters in Distribute Training.
Y
Yancey1989 已提交
455 456 457
  if ((use_gpu &&
       strategy_.reduce_ == BuildStrategy::ReduceStrategy::kReduce) ||
      is_dist_train) {
458 459 460 461 462 463 464 465
    if (strategy_.fuse_broadcast_op_) {
      CreateFusedBroadcastOp(&result, bcast_var_name_set);
    } else {
      for (size_t dev_id = 0; dev_id < bcast_var_name_set.size(); ++dev_id) {
        auto &to_bcast_set = bcast_var_name_set[dev_id];
        for (auto &bcast_name : to_bcast_set) {
          CreateBroadcastOp(&result, bcast_name, dev_id);
        }
466
      }
C
chengduoZH 已提交
467 468
    }
  }
Y
Yu Yang 已提交
469
  /*
X
Xin Pan 已提交
470 471 472
  Dependency graph has been constructed. However, there are still data
  hazards need to be handled.
 */
Y
Yu Yang 已提交
473
  PolishGraphToSupportDataHazards(&result);
Y
Yu Yang 已提交
474

Y
Yu Yang 已提交
475 476 477 478
  /*
   * Only variables should be the leaves of graph.
   */
  AddOutputToLeafOps(&result);
X
Xin Pan 已提交
479
  result.Erase<GraphOps>(kGraphOps);
Q
qiaolongfei 已提交
480
  return graph;
Y
Yu Yang 已提交
481 482
}

Y
Yancey1989 已提交
483 484 485
bool MultiDevSSAGraphBuilder::IsSparseGradient(const std::string &og) const {
  PADDLE_ENFORCE(all_vars_.count(og) != 0);
  if (all_vars_.at(og)->GetType() == proto::VarType::SELECTED_ROWS) {
C
fix ci  
chengduoZH 已提交
486 487 488
    return true;
  }
  return false;
489 490
}

491 492
void MultiDevSSAGraphBuilder::SetCommunicationContext(
    OpHandleBase *op_handle, const platform::Place &p) const {
P
peizhilin 已提交
493
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
494 495 496 497 498 499 500 501 502 503
  if (nccl_ctxs_ == nullptr) {
    op_handle->SetDeviceContext(p,
                                platform::DeviceContextPool::Instance().Get(p));
  }
#else
  op_handle->SetDeviceContext(p,
                              platform::DeviceContextPool::Instance().Get(p));
#endif
}

X
Xin Pan 已提交
504
void MultiDevSSAGraphBuilder::CreateBroadcastOp(ir::Graph *result,
C
chengduoZH 已提交
505
                                                const std::string &p_name,
C
chengduoZH 已提交
506
                                                size_t src_dev_id) const {
P
peizhilin 已提交
507
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
X
polish  
Xin Pan 已提交
508 509 510
  auto *op_handle = new BroadcastOpHandle(
      result->CreateEmptyNode("broadcast", ir::Node::Type::kOperation),
      local_scopes_, places_, nccl_ctxs_);
C
chengduoZH 已提交
511
#else
X
polish  
Xin Pan 已提交
512 513 514
  auto *op_handle = new BroadcastOpHandle(
      result->CreateEmptyNode("broadcast", ir::Node::Type::kOperation),
      local_scopes_, places_);
C
chengduoZH 已提交
515
#endif
X
Xin Pan 已提交
516
  result->Get<GraphOps>(kGraphOps).emplace_back(op_handle);
X
Xin Pan 已提交
517

X
Xin Pan 已提交
518
  auto *in =
X
clean1  
Xin Pan 已提交
519
      result->Get<GraphVars>(kGraphVars).at(src_dev_id).at(p_name).back();
C
chengduoZH 已提交
520 521 522 523
  op_handle->AddInput(in);

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
C
chengduoZH 已提交
524
    SetCommunicationContext(op_handle, p);
X
Xin Pan 已提交
525
    auto &vars = result->Get<GraphVars>(kGraphVars).at(i).at(p_name);
X
polish  
Xin Pan 已提交
526 527 528
    auto *out_var = new VarHandle(
        result->CreateEmptyNode(p_name, ir::Node::Type::kVariable), vars.size(),
        i, p_name, p);
C
chengduoZH 已提交
529 530 531 532 533
    vars.emplace_back(out_var);
    op_handle->AddOutput(out_var);
  }
}

534 535 536
void MultiDevSSAGraphBuilder::CreateFusedBroadcastOp(
    ir::Graph *result,
    const std::vector<std::unordered_set<std::string>> &bcast_varnames) const {
P
peizhilin 已提交
537
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
  auto *op_handle = new FusedBroadcastOpHandle(
      result->CreateEmptyNode("fused_broadcast", ir::Node::Type::kOperation),
      local_scopes_, places_, nccl_ctxs_);
#else
  auto *op_handle = new FusedBroadcastOpHandle(
      result->CreateEmptyNode("fused_broadcast", ir::Node::Type::kOperation),
      local_scopes_, places_);
#endif
  result->Get<GraphOps>(kGraphOps).emplace_back(op_handle);

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
    SetCommunicationContext(op_handle, p);
  }

  for (size_t dev_id = 0; dev_id < bcast_varnames.size(); ++dev_id) {
    for (auto &p_name : bcast_varnames[dev_id]) {
      auto *in =
X
clean1  
Xin Pan 已提交
556
          result->Get<GraphVars>(kGraphVars).at(dev_id).at(p_name).back();
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
      op_handle->AddInput(in);
      for (size_t out_dev_id = 0; out_dev_id < places_.size(); ++out_dev_id) {
        auto &p = places_[out_dev_id];
        auto &vars =
            result->Get<GraphVars>(kGraphVars).at(out_dev_id).at(p_name);
        auto *out_var = new VarHandle(
            result->CreateEmptyNode(p_name, ir::Node::Type::kVariable),
            vars.size(), out_dev_id, p_name, p);
        vars.emplace_back(out_var);
        op_handle->AddOutput(out_var);
      }
    }
  }
}

X
Xin Pan 已提交
572
void MultiDevSSAGraphBuilder::CreateComputationalOp(ir::Graph *result,
573
                                                    ir::Node *node,
C
chengduoZH 已提交
574
                                                    int dev_id) const {
X
Xin Pan 已提交
575
  result->Get<GraphOps>(kGraphOps).emplace_back(
X
Xin Pan 已提交
576
      new ComputationOpHandle(result->CreateOpNode(node->Op()),
S
sneaxiy 已提交
577
                              local_scopes_[dev_id], places_[dev_id], dev_id));
578
  CreateOpHandleIOs(result, node, dev_id);
C
chengduoZH 已提交
579 580
}

X
Xin Pan 已提交
581
void MultiDevSSAGraphBuilder::InsertAllReduceOp(ir::Graph *result,
C
chengduoZH 已提交
582
                                                const std::string &og) const {
P
peizhilin 已提交
583
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
X
Xin Pan 已提交
584
  result->Get<GraphOps>(kGraphOps).emplace_back(new AllReduceOpHandle(
X
polish  
Xin Pan 已提交
585 586
      result->CreateEmptyNode("allreduce", ir::Node::Type::kOperation),
      local_scopes_, places_, nccl_ctxs_));
C
chengduoZH 已提交
587
#else
X
Xin Pan 已提交
588
  result->Get<GraphOps>(kGraphOps).emplace_back(new AllReduceOpHandle(
X
polish  
Xin Pan 已提交
589 590
      result->CreateEmptyNode("allreduce", ir::Node::Type::kOperation),
      local_scopes_, places_));
C
chengduoZH 已提交
591
#endif
X
clean1  
Xin Pan 已提交
592
  auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
Y
Yu Yang 已提交
593 594 595

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
C
chengduoZH 已提交
596
    SetCommunicationContext(op_handle, p);
X
Xin Pan 已提交
597
    auto &vars = result->Get<GraphVars>(kGraphVars)[i][og];
Y
Yu Yang 已提交
598 599
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
X
clean1  
Xin Pan 已提交
600
    op_handle->AddInput(prev_grad);
Y
Yu Yang 已提交
601

X
Xin Pan 已提交
602
    auto var =
X
polish  
Xin Pan 已提交
603 604
        new VarHandle(result->CreateEmptyNode(og, ir::Node::Type::kVariable),
                      vars.size(), i, og, p);
Y
Yu Yang 已提交
605 606 607 608 609
    vars.emplace_back(var);
    op_handle->AddOutput(var);
  }
}

610
void MultiDevSSAGraphBuilder::InsertDataBalanceOp(
X
Xin Pan 已提交
611
    ir::Graph *result, const std::vector<std::string> &datas) const {
P
peizhilin 已提交
612
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
X
Xin Pan 已提交
613
  result->Get<GraphOps>(kGraphOps).emplace_back(new DataBalanceOpHandle(
X
polish  
Xin Pan 已提交
614 615
      result->CreateEmptyNode("data_balance", ir::Node::Type::kOperation),
      local_scopes_, places_, nccl_ctxs_));
F
fengjiayi 已提交
616
#else
X
Xin Pan 已提交
617
  result->Get<GraphOps>(kGraphOps).emplace_back(new DataBalanceOpHandle(
X
polish  
Xin Pan 已提交
618 619
      result->CreateEmptyNode("data_balance", ir::Node::Type::kOperation),
      local_scopes_, places_));
F
fengjiayi 已提交
620
#endif
X
clean1  
Xin Pan 已提交
621
  auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
622 623 624 625
  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
    SetCommunicationContext(op_handle, p);
    for (const std::string &d_name : datas) {
X
Xin Pan 已提交
626
      auto &vars = result->Get<GraphVars>(kGraphVars)[i][d_name];
627
      PADDLE_ENFORCE(!vars.empty());
X
clean1  
Xin Pan 已提交
628
      op_handle->AddInput(vars.back());
X
polish  
Xin Pan 已提交
629 630 631
      auto var = new VarHandle(
          result->CreateEmptyNode(d_name, ir::Node::Type::kVariable),
          vars.size(), i, d_name, p);
632 633 634 635 636 637
      vars.emplace_back(var);
      op_handle->AddOutput(var);
    }
  }
}

X
Xin Pan 已提交
638 639 640
int MultiDevSSAGraphBuilder::GetOpDeviceID(
    const ir::Graph &graph, ir::Node *node,
    const std::unordered_map<std::string, int> &sharded_var_device) const {
Y
yuyang18 已提交
641
  if (strategy_.reduce_ != BuildStrategy::ReduceStrategy::kReduce) {
C
chengduoZH 已提交
642 643
    return -1;
  }
644
  int op_role = boost::get<int>(
645
      node->Op()->GetAttr(framework::OpProtoAndCheckerMaker::OpRoleAttrName()));
646 647
  if (op_role != static_cast<int>(framework::OpRole::kOptimize)) {
    return -1;
C
chengduoZH 已提交
648
  }
649
  auto param_grad = boost::get<std::vector<std::string>>(
X
Xin Pan 已提交
650
      node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleVarAttrName()));
651 652

  PADDLE_ENFORCE_EQ(param_grad.size(), 2U);
X
Xin Pan 已提交
653
  int dev_id = GetVarDeviceID(graph, param_grad[1], sharded_var_device);
X
Xin Pan 已提交
654 655
  PADDLE_ENFORCE_NE(dev_id, -1, "dev_id should not be -1.[%s, %s, %s]",
                    node->Op()->Type(), param_grad[0], param_grad[1]);
656
  return dev_id;
657 658
}

X
Xin Pan 已提交
659 660 661
int MultiDevSSAGraphBuilder::GetVarDeviceID(
    const ir::Graph &graph, const std::string &varname,
    const std::unordered_map<std::string, int> &sharded_var_device) const {
X
Xin Pan 已提交
662
  auto got = sharded_var_device.find(varname);
C
chengduo 已提交
663 664 665 666 667 668
  if (got == sharded_var_device.end()) {
    auto pos = varname.find(framework::kNewGradSuffix);
    if (pos != std::string::npos) {
      got = sharded_var_device.find(varname.substr(0, pos));
    }
  }
X
Xin Pan 已提交
669
  return got == sharded_var_device.end() ? -1 : got->second;
C
chengduoZH 已提交
670 671
}

672
void MultiDevSSAGraphBuilder::CreateScaleLossGradOp(
673 674
    ir::Graph *result, const std::string &loss_grad_name,
    ir::Node *out_var_node) const {
Y
Yu Yang 已提交
675
  for (size_t i = 0; i < places_.size(); ++i) {
Y
yuyang18 已提交
676 677
    // Insert ScaleCost OpHandle
    auto *dev_ctx = platform::DeviceContextPool::Instance().Get(places_[i]);
X
Xin Pan 已提交
678
    auto *op_handle = new ScaleLossGradOpHandle(
X
polish  
Xin Pan 已提交
679
        result->CreateEmptyNode("scale_loss_grad", ir::Node::Type::kOperation),
Y
yuyang18 已提交
680
        local_scopes_.size(), local_scopes_[i], places_[i], dev_ctx);
X
Xin Pan 已提交
681
    result->Get<GraphOps>(kGraphOps).emplace_back(op_handle);
Y
Yu Yang 已提交
682 683 684 685 686 687 688

    // FIXME: Currently ScaleLossGradOp only use device_count as scale
    // factor. So it does not depend on any other operators.
    // VarHandle *loss = GetVarHandle(loss_var_name, place);
    // loss->pending_ops_.emplace_back(op_handle);
    // op_handle->inputs_.emplace_back(loss);

689 690
    CreateOpOutput(result, op_handle,
                   result->CreateVarNode(out_var_node->Var()), places_[i], i);
Y
Yu Yang 已提交
691 692 693
  }
}

X
Xin Pan 已提交
694
void MultiDevSSAGraphBuilder::CreateComputationalOps(ir::Graph *result,
695
                                                     ir::Node *node,
T
typhoonzero 已提交
696 697
                                                     size_t num_places) const {
  for (size_t scope_idx = 0; scope_idx < num_places; ++scope_idx) {
Y
Yu Yang 已提交
698 699
    auto p = places_[scope_idx];
    auto s = local_scopes_[scope_idx];
S
sneaxiy 已提交
700 701
    result->Get<GraphOps>(kGraphOps).emplace_back(new ComputationOpHandle(
        result->CreateOpNode(node->Op()), s, p, scope_idx));
702
    CreateOpHandleIOs(result, node, scope_idx);
Y
Yu Yang 已提交
703 704 705
  }
}

X
Xin Pan 已提交
706
VarHandle *MultiDevSSAGraphBuilder::CreateReduceOp(ir::Graph *result,
C
chengduoZH 已提交
707 708
                                                   const std::string &og,
                                                   int dst_dev_id) const {
P
peizhilin 已提交
709
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
X
Xin Pan 已提交
710
  result->Get<GraphOps>(kGraphOps).emplace_back(new ReduceOpHandle(
X
polish  
Xin Pan 已提交
711 712
      result->CreateEmptyNode("reduce", ir::Node::Type::kOperation),
      local_scopes_, places_, nccl_ctxs_));
C
chengduoZH 已提交
713
#else
X
Xin Pan 已提交
714
  result->Get<GraphOps>(kGraphOps).emplace_back(new ReduceOpHandle(
X
polish  
Xin Pan 已提交
715 716
      result->CreateEmptyNode("reduce", ir::Node::Type::kOperation),
      local_scopes_, places_));
C
chengduoZH 已提交
717
#endif
X
clean1  
Xin Pan 已提交
718
  auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
C
chengduoZH 已提交
719 720 721

  for (size_t i = 0; i < places_.size(); ++i) {
    auto &p = places_[i];
C
chengduoZH 已提交
722
    SetCommunicationContext(op_handle, p);
X
Xin Pan 已提交
723
    auto &vars = result->Get<GraphVars>(kGraphVars)[i][og];
C
chengduoZH 已提交
724 725
    PADDLE_ENFORCE(!vars.empty());
    auto &prev_grad = vars.back();
X
clean1  
Xin Pan 已提交
726
    op_handle->AddInput(prev_grad);
C
chengduoZH 已提交
727
  }
X
Xin Pan 已提交
728
  auto &vars = result->Get<GraphVars>(kGraphVars)[dst_dev_id][og];
X
polish  
Xin Pan 已提交
729 730 731
  auto var =
      new VarHandle(result->CreateEmptyNode(og, ir::Node::Type::kVariable),
                    vars.size(), dst_dev_id, og, places_[dst_dev_id]);
C
chengduoZH 已提交
732 733 734 735 736
  vars.emplace_back(var);
  op_handle->AddOutput(var);
  return var;
}

X
Xin Pan 已提交
737 738 739
int MultiDevSSAGraphBuilder::CreateDistTrainOp(
    ir::Graph *result, ir::Node *node,
    std::unordered_map<std::string, int> *sharded_var_device) const {
Y
Yancey1989 已提交
740
  int op_dev_id = -1;
741 742 743
  std::vector<std::string> input_var_names;
  std::vector<std::string> output_var_names;
  for (ir::Node *input : node->inputs) {
X
Xin Pan 已提交
744
    input_var_names.push_back(input->Name());
745 746
  }
  for (ir::Node *output : node->outputs) {
X
Xin Pan 已提交
747
    output_var_names.push_back(output->Name());
748 749 750
  }

  if (node->Op()->Type() == "split_byref" ||
751 752
      node->Op()->Type() == "split_selected_rows" ||
      node->Op()->Type() == "split_ids") {
X
Xin Pan 已提交
753
    // TODO(paddle-dev): getting the first var is not safe.
X
Xin Pan 已提交
754 755
    op_dev_id =
        GetVarDeviceID(*result, input_var_names[0], *sharded_var_device);
Y
Yancey1989 已提交
756
    if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce) {
757 758
      op_dev_id = GetAppropriateDeviceID(input_var_names);
      for (auto &varname : input_var_names) {
X
Xin Pan 已提交
759
        sharded_var_device->emplace(varname, op_dev_id);
Y
Yancey1989 已提交
760 761
      }
    }
762
    for (auto &varname : output_var_names) {
X
Xin Pan 已提交
763
      sharded_var_device->emplace(varname, op_dev_id);
Y
Yancey1989 已提交
764
    }
765
  } else if (node->Op()->Type() == "concat") {
X
Xin Pan 已提交
766 767
    op_dev_id =
        GetVarDeviceID(*result, input_var_names[0], *sharded_var_device);
768
    for (auto &varname : output_var_names) {
X
Xin Pan 已提交
769
      sharded_var_device->emplace(varname, op_dev_id);
Y
yi.wu 已提交
770
    }
Y
Yancey1989 已提交
771
  } else {
772
    LOG(ERROR) << "got unexpected dist op: " << node->Op()->Type();
W
Wu Yi 已提交
773
    PADDLE_THROW(
Y
Yancey1989 已提交
774 775 776 777 778
        "the distribute training related op should be in [split_byref, "
        "concat].");
  }

  PADDLE_ENFORCE(op_dev_id != -1,
779 780
                 "can not find right place for distributed op: %s",
                 node->Op()->Type());
Y
Yancey1989 已提交
781

782
  CreateComputationalOp(result, node, op_dev_id);
Y
Yancey1989 已提交
783
  return op_dev_id;
W
Wu Yi 已提交
784 785 786
}

void SetOpInputsAllPlaces(ir::Graph *result, ir::Node *node, int num_places) {
X
clean1  
Xin Pan 已提交
787
  auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
W
Wu Yi 已提交
788 789 790 791 792 793
  for (ir::Node *input : node->inputs) {
    VarHandle *var = nullptr;
    for (int place_offset = 0; place_offset < num_places; ++place_offset) {
      auto &var_holders = result->Get<GraphVars>(kGraphVars)[place_offset];
      auto &var_holder = var_holders[input->Name()];
      if (!var_holder.empty()) {
X
clean1  
Xin Pan 已提交
794
        var = *var_holder.rbegin();
W
Wu Yi 已提交
795 796 797
        op_handle->AddInput(var);
      }
    }
Y
Yancey1989 已提交
798 799 800
  }
}

801
// Create RPC related op handles that connects its in ops and out ops.
X
Xin Pan 已提交
802 803 804
int MultiDevSSAGraphBuilder::CreateRPCOp(
    ir::Graph *result, ir::Node *node,
    std::unordered_map<std::string, int> *sharded_var_device) const {
Y
Yancey1989 已提交
805
  int op_dev_id = -1;
806
  if (node->Op()->Type() == "send") {
X
Xin Pan 已提交
807
    // TODO(paddle-dev): getting the first var is not safe.
X
Xin Pan 已提交
808 809
    op_dev_id =
        GetVarDeviceID(*result, node->inputs[0]->Name(), *sharded_var_device);
X
Xin Pan 已提交
810 811
    PADDLE_ENFORCE(!ir::IsControlDepVar(*node->inputs[0]),
                   "This hack no longer holds, please fix.");
Y
Yancey1989 已提交
812 813 814
    // the variable name which contains .block means it was splited by
    // split_byref op
    if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce &&
X
Xin Pan 已提交
815
        node->inputs[0]->Name().find(".block") == std::string::npos) {
816 817
      std::vector<std::string> input_var_names;
      for (ir::Node *n : node->inputs) {
X
Xin Pan 已提交
818
        input_var_names.push_back(n->Name());
819
      }
W
Wu Yi 已提交
820 821 822 823
      auto send_param_grad = boost::get<std::vector<std::string>>(
          node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleVarAttrName()));
      PADDLE_ENFORCE_EQ(send_param_grad.size(), 2U);
      op_dev_id = GetAppropriateDeviceID({send_param_grad[1]});
M
minqiyang 已提交
824 825
      VLOG(10) << "send grad " << input_var_names[0] << " origin "
               << send_param_grad[1] << " place: " << op_dev_id;
826
      for (auto &varname : input_var_names) {
X
Xin Pan 已提交
827
        sharded_var_device->emplace(varname, op_dev_id);
Y
Yancey1989 已提交
828
      }
X
Xin Pan 已提交
829
      sharded_var_device->emplace(send_param_grad[1], op_dev_id);
Y
Yancey1989 已提交
830
    }
831 832 833
  } else if (node->Op()->Type() == "recv") {
    std::vector<std::string> output_var_names;
    for (ir::Node *n : node->outputs) {
X
Xin Pan 已提交
834
      output_var_names.push_back(n->Name());
835
    }
W
Wu Yi 已提交
836 837 838
    auto recv_param_grad = boost::get<std::vector<std::string>>(
        node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleVarAttrName()));
    if (recv_param_grad.size() == 2U) {
X
Xin Pan 已提交
839 840
      op_dev_id =
          GetVarDeviceID(*result, recv_param_grad[1], *sharded_var_device);
M
minqiyang 已提交
841 842 843
      VLOG(10) << "recv param " << recv_param_grad[0]
               << " get grad place: " << recv_param_grad[1]
               << " place: " << op_dev_id;
W
Wu Yi 已提交
844 845 846
    } else {
      op_dev_id = GetAppropriateDeviceID(output_var_names);
    }
847
    for (auto &varname : output_var_names) {
X
Xin Pan 已提交
848
      sharded_var_device->emplace(varname, op_dev_id);
Y
Yancey1989 已提交
849 850
    }
  } else {
W
Wu Yi 已提交
851
    // send_barrier, fetch_barrier will run on place 0;
Y
Yancey1989 已提交
852 853 854 855
    op_dev_id = 0;
  }

  PADDLE_ENFORCE(op_dev_id != -1, "can not find the right place for rpc op: %s",
856
                 node->Op()->Type());
X
Xin Pan 已提交
857
  result->Get<GraphOps>(kGraphOps).emplace_back(new RPCOpHandle(
858 859
      result->CreateOpNode(node->Op()), *node->Op(), local_scopes_[op_dev_id],
      node->Op()->Type(), places_[op_dev_id]));
Y
fix pe  
Yancey1989 已提交
860

W
Wu Yi 已提交
861 862
  if (node->Op()->Type() == "send") {
    CreateOpHandleIOs(result, node, op_dev_id);
Y
Yancey1989 已提交
863
  } else {
W
Wu Yi 已提交
864 865 866
    // send_barrier, recv, fetch_barrier's inputs are deps var, get them from
    // all places
    auto p = places_[op_dev_id];
X
clean1  
Xin Pan 已提交
867
    auto *op_handle = result->Get<GraphOps>(kGraphOps).back();
W
Wu Yi 已提交
868 869
    op_handle->SetDeviceContext(p,
                                platform::DeviceContextPool::Instance().Get(p));
Y
Yancey1989 已提交
870

W
Wu Yi 已提交
871 872 873 874
    SetOpInputsAllPlaces(result, node, places_.size());
    for (ir::Node *output : node->outputs) {
      int outvar_dev_id = op_dev_id;
      if (node->Op()->Type() == "fetch_barrier") {
X
Xin Pan 已提交
875 876
        outvar_dev_id =
            GetVarDeviceID(*result, output->Name(), *sharded_var_device);
Q
Qiao Longfei 已提交
877
        PADDLE_ENFORCE_NE(outvar_dev_id, -1, "output name %s", output->Name());
W
Wu Yi 已提交
878 879 880 881 882 883 884 885 886 887 888 889
      }
      p = places_[outvar_dev_id];
      ir::Node *new_node = nullptr;
      if (output->Var()) {
        new_node = result->CreateVarNode(output->Var());
      } else {
        new_node =
            result->CreateEmptyNode(output->Name(), ir::Node::Type::kVariable);
      }
      CreateOpOutput(result, op_handle, new_node, p, outvar_dev_id);
    }
  }
Y
Yancey1989 已提交
890
  return op_dev_id;
Y
Yu Yang 已提交
891 892
}

893
bool MultiDevSSAGraphBuilder::IsScaleLossOp(ir::Node *node) const {
Y
yuyang18 已提交
894
  return boost::get<int>(
895
             node->Op()->GetAttr(OpProtoAndCheckerMaker::OpRoleAttrName())) ==
Y
Fix bug  
yuyang18 已提交
896 897 898
             (static_cast<int>(OpRole::kBackward) |
              static_cast<int>(OpRole::kLoss)) &&
         !loss_var_name_.empty();  // If loss_var is empty. This is test mode
Y
Yu Yang 已提交
899
}
Y
Yu Yang 已提交
900 901 902
}  // namespace details
}  // namespace framework
}  // namespace paddle
X
Xin Pan 已提交
903

X
Xin Pan 已提交
904
REGISTER_PASS(multi_devices_pass,
X
Xin Pan 已提交
905 906 907 908 909
              paddle::framework::details::MultiDevSSAGraphBuilder)
    .RequirePassAttr(paddle::framework::details::kLossVarName)
    .RequirePassAttr(paddle::framework::details::kPlaces)
    .RequirePassAttr(paddle::framework::details::kParams)
    .RequirePassAttr(paddle::framework::details::kLocalScopes)
910 911
    .RequirePassAttr(paddle::framework::details::kStrategy)
    .RequirePassAttr(paddle::framework::details::kNumTrainers);