fc_op.cc 5.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/framework/op_registry.h"
#include "paddle/operators/net_op.h"

namespace paddle {
namespace operators {

class FCOp : public NetOp {
 public:
  FCOp(const std::string &type, const framework::VariableNameMap &inputs,
       const framework::VariableNameMap &outputs,
       const framework::AttributeMap &attrs)
      : NetOp(type, inputs, outputs, attrs) {
L
Liu Yiqun 已提交
27 28
    auto x = Inputs("X");
    auto w = Inputs("W");
29
    auto mul_out = Outputs("mul_out");
L
Liu Yiqun 已提交
30 31 32 33
    PADDLE_ENFORCE_EQ(
        x.size(), w.size(),
        "The size of inputs X(%d) should be the same as that of weights W(%d).",
        x.size(), w.size());
34 35 36 37
    PADDLE_ENFORCE_EQ(mul_out.size(), x.size(),
                      "The size of intermediate mul_out(%d) should be the same "
                      "as that of inputs X(%d).",
                      mul_out.size(), x.size());
L
Liu Yiqun 已提交
38 39 40 41 42

    int n = x.size();
    PADDLE_ENFORCE_GE(n, 1,
                      "The size of inputs X(%d) should be no less than 1.", n);

43 44 45 46 47
    // mul_out[i] = X[i] * W[i]
    for (int i = 0; i < n; i++) {
      AppendOp(framework::OpRegistry::CreateOp(
          "mul", {{"X", {x[i]}}, {"Y", {w[i]}}}, {{"Out", {mul_out[i]}}}, {}));
    }
L
Liu Yiqun 已提交
48

49 50 51 52 53
    // sum_out = X[0] * W[0] + ... + X[n-1] * W[n-1]
    if (n > 1) {
      AppendOp(framework::OpRegistry::CreateOp(
          "sum", {{"X", {mul_out}}}, {{"Out", {Output("sum_out")}}}, {}));
    } else {
L
Liu Yiqun 已提交
54
      AppendOp(framework::OpRegistry::CreateOp(
55
          "identity", {{"X", {mul_out[0]}}}, {{"Y", {Output("sum_out")}}}, {}));
L
Liu Yiqun 已提交
56
    }
57

58
    // add_out = sum_out + b
59
    auto b = Input("b");
60
    std::string add_out = "sum_out";
61
    if (b != framework::kEmptyVarName) {
L
Liu Yiqun 已提交
62
      add_out = "add_out";
63 64 65
      AppendOp(framework::OpRegistry::CreateOp(
          "rowwise_add", {{"X", {Output("sum_out")}}, {"b", {Input("b")}}},
          {{"Out", {Output(add_out)}}}, {}));
66
    } else {
L
Liu Yiqun 已提交
67 68
      if (Output("add_out") != framework::kEmptyVarName) {
        this->Rename(Output("add_out"), framework::kEmptyVarName);
69
      }
70 71
    }

L
Liu Yiqun 已提交
72 73 74
    auto activation = Attr<std::string>("activation");
    AppendOp(framework::OpRegistry::CreateOp(
        activation, {{"X", {Output(add_out)}}}, {{"Y", {Output("Y")}}}, {}));
75 76 77 78 79 80 81 82
    CompleteAddOp(false);
  }
};

class FCOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  FCOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
83 84 85 86
    AddInput("X", "The inputs of FC operator, a ordered vector of 2-D matrix.")
        .AsDuplicable();
    AddInput("W", "The weights of FC operator, a ordered vector of 2-D matrix.")
        .AsDuplicable();
L
Liu Yiqun 已提交
87
    AddInput("b", "The 1-D bias vector of FC operator");
88

L
Liu Yiqun 已提交
89
    AddOutput("Y", "The activated output matrix of FC operator");
90 91 92 93 94 95 96 97
    AddOutput("mul_out",
              "The intermediate outputs of FC operator, "
              "saving the product of X[i] * W[i]")
        .AsIntermediate()
        .AsDuplicable();
    AddOutput("sum_out",
              "The intermediate output of FC operator, "
              "saving the sum of products, sum(X[i] * W[i])")
98
        .AsIntermediate();
99 100
    AddOutput("add_out",
              "The non-actived output of FC operator, saving X * W + b")
101 102 103 104 105 106 107 108 109 110 111 112 113 114
        .AsIntermediate();
    AddAttr<std::string>("activation", "The activation type of FC operator.")
        .SetDefault("identity")
        .InEnum({"identity", "sigmoid", "softmax"});

    AddComment(R"DOC(
Fully Connected Operator, known as Fully Connected Layer or Inner Product Layer
in Convolutional Neural Networks. Neurons in a fully connected layer have
full connections to all activations in the previous layer.
It computes an inner product of a set of
learned weights with a matrix multiplication followed by a bias offset
(optionally).

Equation:
L
Liu Yiqun 已提交
115
  Y = Act(sum_n{X_i * W_i} + b)
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137

where X_i is a 2D matrix of size (M x K), usually M is the minibatch size and
K is the number of features. W_i is also a 2D matrix of size (K x N),
where N means the number of neurons in the fully connected layer.
b is a 1D vector of size N. Thus, the output Y is a 2D matrix of size (M x N).
Activation type can be set to `identity` (default), `sigmoid` or `softmax`.

  The config api is `paddle.v2.layer.fc`.
)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

USE_OP(mul);
USE_OP(rowwise_add);
USE_NO_KERNEL_OP(identity);
USE_OP(sigmoid);
USE_OP(softmax);

namespace ops = paddle::operators;
138
REGISTER_OP_WITHOUT_GRADIENT(fc, ops::FCOp, ops::FCOpMaker);