test_cumprod_op.py 6.3 KB
Newer Older
H
hlygit66666 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np

from op_test import OpTest
import random
import paddle

import paddle.nn as nn
import paddle.nn.functional as F
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid import compiler, Program, program_guard

np.random.seed(0)


# define cumprod grad function.
def cumprod_grad(x, y, dy, dx, shape, dim):
    if dim < 0:
        dim += len(shape)
    mid_dim = shape[dim]
    outer_dim = 1
    inner_dim = 1
    for i in range(0, dim):
        outer_dim *= shape[i]
    for i in range(dim + 1, len(shape)):
        inner_dim *= shape[i]
    for i in range(outer_dim):
        for k in range(inner_dim):
            for j in range(mid_dim):
                index = i * mid_dim * inner_dim + j * inner_dim + k
                for n in range(mid_dim):
                    pos = i * mid_dim * inner_dim + n * inner_dim + k
                    elem = 0
                    if j == 0:
                        elem = dy[pos]
                    else:
                        elem = dy[pos] * y[index - inner_dim]
                    if pos > index:
                        for m in range(index + inner_dim, pos + inner_dim,
                                       inner_dim):
                            elem *= x[m]
                    elif pos < index:
                        elem = 0
                    dx[index] += elem


# test function.
class TestCumprod(OpTest):
    def init_params(self):
        self.shape = (2, 3, 4, 5)
        self.zero_nums = [0, 10, 20, 30, int(np.prod(self.shape))]

    def init_dtype(self):
        self.dtype = np.float64

    def setUp(self):
        paddle.enable_static()
        self.init_params()
        self.init_dtype()
        self.op_type = "cumprod"
        self.inputs = {'X': None}
        self.outputs = {'Out': None}
        self.attrs = {'dim': None}

    def prepare_inputs_outputs_attrs(self, dim, zero_num):
        self.x = np.random.random(self.shape).astype(self.dtype) + 0.5
        if zero_num > 0:
            zero_num = min(zero_num, self.x.size)
            shape = self.x.shape
            self.x = self.x.flatten()
            indices = random.sample(range(self.x.size), zero_num)
            for i in indices:
                self.x[i] = 0
            self.x = np.reshape(self.x, self.shape)
        self.out = np.cumprod(self.x, axis=dim)
        self.inputs = {'X': self.x}
        self.outputs = {'Out': self.out}
        self.attrs = {'dim': dim}

    def init_grad_input_output(self, dim):
        reshape_x = self.x.reshape(self.x.size)
        self.grad_out = np.ones(self.x.size, self.dtype)
        self.grad_x = np.zeros(self.x.size, self.dtype)
        out_data = self.out.reshape(self.x.size)
        if self.dtype == np.complex128 or self.dtype == np.complex64:
            reshape_x = np.conj(reshape_x)
            out_data = np.conj(out_data)
        cumprod_grad(reshape_x, out_data, self.grad_out, self.grad_x,
                     self.shape, dim)
        self.grad_x = self.grad_x.reshape(self.shape)
        self.grad_out = self.grad_out.reshape(self.shape)

    # test forward.
    def test_check_output(self):
        for dim in range(-len(self.shape), len(self.shape)):
            for zero_num in self.zero_nums:
                self.prepare_inputs_outputs_attrs(dim, zero_num)
                self.check_output()

    # test backward.
    def test_check_grad(self):
        for dim in range(-len(self.shape), len(self.shape)):
            for zero_num in self.zero_nums:
                self.prepare_inputs_outputs_attrs(dim, zero_num)
                self.init_grad_input_output(dim)
                if self.dtype == np.float64:
                    self.check_grad(['X'], 'Out')
                else:
                    self.check_grad(
                        ['X'],
                        'Out',
                        user_defined_grads=[self.grad_x],
                        user_defined_grad_outputs=[self.grad_out])


# test float32 case.
class TestCumprod_float32(TestCumprod):
    def init_dtype(self):
        self.dtype = np.float32


# test complex64 case.
class TestCumprod_complex64(TestCumprod):
    def init_dtype(self):
        self.dtype = np.complex64


# test complex128 case.
class TestCumprod_complex128(TestCumprod):
    def init_dtype(self):
        self.dtype = np.complex128


# test api.
class TestCumprodAPI(unittest.TestCase):
    def init_dtype(self):
        self.dtype = 'float64'
        self.shape = [2, 3, 10, 10]

    def setUp(self):
        paddle.enable_static()
        self.init_dtype()
        self.x = (np.random.rand(2, 3, 10, 10) + 0.5).astype(self.dtype)
        self.place = [paddle.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.place.append(paddle.CUDAPlace(0))

    # test static graph api.
    def test_static_api(self):
        paddle.enable_static()

        def run(place):
            with paddle.static.program_guard(paddle.static.Program()):
                x = paddle.fluid.data('X', self.shape, dtype=self.dtype)
                out = paddle.cumprod(x, -2)
                exe = paddle.static.Executor(place)
                res = exe.run(feed={'X': self.x}, fetch_list=[out])
            out_ref = np.cumprod(self.x, -2)

            for r in res:
                self.assertEqual(np.allclose(out_ref, r), True)

        for place in self.place:
            run(place)

    # test dynamic graph api.
    def test_dygraph_api(self):
        def run(place):
            paddle.disable_static(place)
            x = paddle.to_tensor(self.x)
            out = paddle.cumprod(x, 1)
            out_ref = np.cumprod(self.x, 1)
            self.assertEqual(np.allclose(out_ref, out.numpy()), True)
            paddle.enable_static()

        for place in self.place:
            run(place)


if __name__ == "__main__":
    unittest.main()