tracer.cc 9.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/tracer.h"

M
minqiyang 已提交
17 18 19 20
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/enforce.h"

21
namespace paddle {
M
minqiyang 已提交
22 23 24 25 26
namespace imperative {

void CreateGradOp(const framework::OpDesc& op_desc,
                  const std::unordered_set<std::string>& no_grad_set,
                  const std::vector<framework::BlockDesc*>& grad_sub_block,
X
Xin Pan 已提交
27
                  std::vector<framework::OpDesc*>* grad_op_descs,
M
minqiyang 已提交
28
                  std::unordered_map<std::string, std::string>* grad_to_var) {
X
Xin Pan 已提交
29 30
  PADDLE_ENFORCE(grad_op_descs->empty());
  std::vector<std::unique_ptr<framework::OpDesc>> descs =
M
minqiyang 已提交
31 32 33
      framework::OpInfoMap::Instance()
          .Get(op_desc.Type())
          .GradOpMaker()(op_desc, no_grad_set, grad_to_var, grad_sub_block);
X
Xin Pan 已提交
34 35 36
  for (auto& desc : descs) {
    grad_op_descs->emplace_back(desc.release());
  }
M
minqiyang 已提交
37 38
}

M
minqiyang 已提交
39 40 41 42
void InitVar(framework::Variable* var, framework::Variable* grad_var,
             platform::DeviceContext* dev_ctx) {
  PADDLE_ENFORCE_NOT_NULL(dev_ctx,
                          "Could not get valid device from forward op");
M
minqiyang 已提交
43
  auto& var_t = var->Get<framework::LoDTensor>();
M
minqiyang 已提交
44 45 46
  grad_var->GetMutable<framework::LoDTensor>()->mutable_data<float>(
      var_t.dims(), dev_ctx->GetPlace());
  operators::math::set_constant(
M
minqiyang 已提交
47
      *dev_ctx, grad_var->GetMutable<framework::LoDTensor>(), 0.0);
M
minqiyang 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
}

platform::Place GetExpectedPlace(platform::Place place, VarBasePtrMap inputs) {
  platform::Place result = place;
  for (auto it : inputs) {
    for (VarBase* var : it.second) {
      platform::Place tmp_place =
          var->var_->Get<framework::LoDTensor>().place();
      if (!platform::is_same_place(tmp_place, result)) {
        PADDLE_THROW(
            "Input variable should keep in the same place: %s, but get place: "
            "%s of input %s instead",
            result, tmp_place, it.first);
      }
    }
  }

  return result;
M
minqiyang 已提交
66 67 68 69
}

void Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs,
                   const VarBasePtrMap& outputs, framework::BlockDesc* block,
M
minqiyang 已提交
70
                   const platform::Place expected_place,
M
minqiyang 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
                   const bool stop_gradient) {
  std::map<std::string, VarBase*> vars;

  framework::OpDesc* op_desc = op->op_desc_;
  VLOG(3) << "tracer tracing " << op_desc->Type();
  op_desc->InferShape(*block);
  op_desc->InferVarType(block);
  std::unique_ptr<framework::OperatorBase> op_base =
      framework::OpRegistry::CreateOp(*op_desc);

  framework::VariableValueMap invars_map;
  framework::VariableValueMap outvars_map;

  op->input_vars_ = inputs;
  for (auto it : op->input_vars_) {
    auto& invars = invars_map[it.first];
    for (VarBase* inp : it.second) {
M
minqiyang 已提交
88
      PADDLE_ENFORCE_NOT_NULL(inp->var_, "op %s input %s nullptr",
M
minqiyang 已提交
89 90
                              op->op_desc_->Type(), inp->var_desc_->Name());

M
minqiyang 已提交
91
      invars.push_back(inp->var_);
M
minqiyang 已提交
92
      vars[inp->var_desc_->Name()] = inp;
X
Xin Pan 已提交
93 94 95
      if (inp->PreOp()) {
        op->pre_ops_[it.first].push_back(inp->PreOp());
        op->pre_ops_out_idx_[it.first].push_back(inp->PreOpOutIdx());
M
minqiyang 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109
      } else {
        op->pre_ops_[it.first].push_back(nullptr);
      }
      VLOG(3) << "input vname " << inp->var_desc_->Name() << " "
              << inp->var_->IsInitialized();
    }
  }

  op->output_vars_ = outputs;
  for (auto it : op->output_vars_) {
    auto& outvars = outvars_map[it.first];
    const std::vector<VarBase*>& outputs = it.second;
    for (size_t i = 0; i < outputs.size(); ++i) {
      VarBase* out = outputs[i];
M
minqiyang 已提交
110
      outvars.push_back(out->var_);
M
minqiyang 已提交
111 112 113 114 115 116 117 118
      vars[out->var_desc_->Name()] = out;

      framework::VarDesc* var_desc = block->FindVar(out->var_desc_->Name());
      if (var_desc->GetType() == framework::proto::VarType::LOD_TENSOR) {
        out->var_->GetMutable<framework::LoDTensor>();
      } else {
        LOG(ERROR) << "tracer doesn't support yet";
      }
X
Xin Pan 已提交
119
      out->TrackPreOp(op, it.first, i, stop_gradient);
M
minqiyang 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134

      VLOG(3) << "output vname " << out->var_desc_->Name() << " "
              << out->var_->IsInitialized();
    }
  }

  VLOG(3) << "tracer running " << op_desc->Type();
  framework::RuntimeContext ctx(invars_map, outvars_map);

  // TODO(panyx0718): Cache p.
  framework::OperatorWithKernel* op_kernel =
      dynamic_cast<framework::OperatorWithKernel*>(op_base.get());
  PADDLE_ENFORCE_NOT_NULL(op_kernel, "only support op with kernel");

  framework::Scope scope;
P
Paddle CI 已提交
135 136 137
  op->place_ = GetExpectedPlace(expected_place, inputs);
  PreparedOp prepared_op = PreparedOp::Prepare(ctx, *op_kernel, op->place_);
  prepared_op.op.RuntimeInferShape(scope, op->place_, ctx);
M
minqiyang 已提交
138 139
  prepared_op.func(framework::ExecutionContext(
      prepared_op.op, scope, *prepared_op.dev_ctx, prepared_op.ctx));
M
minqiyang 已提交
140 141

  if (!stop_gradient) {
142 143
    std::unique_ptr<std::unordered_map<std::string, std::string>> grad_to_var(
        new std::unordered_map<std::string, std::string>());
X
Xin Pan 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
    CreateGradOp(*op_desc, {}, {block}, &op->grad_op_descs_, grad_to_var.get());

    op->grad_input_vars_.resize(op->grad_op_descs_.size());
    op->grad_output_vars_.resize(op->grad_op_descs_.size());
    for (size_t i = 0; i < op->grad_op_descs_.size(); ++i) {
      framework::OpDesc* grad_op_desc = op->grad_op_descs_[i];
      for (auto it : grad_op_desc->Inputs()) {
        auto& grad_in_vars = op->grad_input_vars_[i][it.first];
        for (const std::string& grad_invar : it.second) {
          block->FindRecursiveOrCreateVar(grad_invar);
          auto var_it = grad_to_var->find(grad_invar);
          if (var_it == grad_to_var->end()) {
            auto fwd_var_it = vars.find(grad_invar);
            PADDLE_ENFORCE(fwd_var_it != vars.end());
            // Forward inputs or outputs.
            grad_in_vars.push_back(fwd_var_it->second->var_);
          } else {
            VarBase* var = vars[var_it->second];
            if (!var->grads_->var_->IsInitialized()) {
              InitVar(var->var_, var->grads_->var_,
                      prepared_op.GetDeviceContext());
            }
            // Douts.
            grad_in_vars.push_back(var->grads_->var_);
          }
        }
      }

      for (auto it : grad_op_desc->Outputs()) {
        auto& grad_out_vars = op->grad_output_vars_[i][it.first];
        for (const std::string& grad_outvar : it.second) {
          block->FindRecursiveOrCreateVar(grad_outvar);
          auto var_it = grad_to_var->find(grad_outvar);
          PADDLE_ENFORCE(var_it != grad_to_var->end(),
                         "Could not found the grad op output var, should this "
                         "operator %s's stop gradient be True",
                         op_desc->Type());
M
minqiyang 已提交
181
          VarBase* var = vars[var_it->second];
M
minqiyang 已提交
182
          if (!var->grads_->var_->IsInitialized()) {
M
minqiyang 已提交
183 184
            InitVar(var->var_, var->grads_->var_,
                    prepared_op.GetDeviceContext());
M
minqiyang 已提交
185
          }
X
Xin Pan 已提交
186
          grad_out_vars.push_back(var->grads_->var_);
M
minqiyang 已提交
187 188 189 190 191 192 193 194
        }
      }
    }
  }

  op->block_ = block;
}

195 196 197 198
std::vector<VarBase*> Tracer::PyTrace(OpBase* op,
                                      const std::vector<VarBase*>& inputs,
                                      bool stop_gradient) {
  VLOG(3) << "py_trace";
X
Xin Pan 已提交
199 200
  op->input_vars_[PyLayer::kFwdInp] = inputs;
  op->output_vars_[PyLayer::kFwdOut] = PyLayer::Apply(op->forward_id_, inputs);
201
  for (VarBase* inp : inputs) {
X
Xin Pan 已提交
202 203 204
    if (inp->PreOp()) {
      op->pre_ops_[PyLayer::kFwdInp].push_back(inp->PreOp());
      op->pre_ops_out_idx_[PyLayer::kFwdInp].push_back(inp->PreOpOutIdx());
205
    } else {
X
Xin Pan 已提交
206
      op->pre_ops_[PyLayer::kFwdInp].push_back(nullptr);
207 208 209
    }
  }

X
Xin Pan 已提交
210
  auto& outputs = op->output_vars_[PyLayer::kFwdOut];
211 212
  for (size_t i = 0; i < outputs.size(); ++i) {
    VarBase* out = outputs[i];
X
Xin Pan 已提交
213
    out->TrackPreOp(op, PyLayer::kFwdOut, i, stop_gradient);
214 215
  }
  if (!stop_gradient) {
X
Xin Pan 已提交
216 217
    op->grad_input_vars_.resize(1);
    op->grad_output_vars_.resize(1);
X
Xin Pan 已提交
218
    auto& grad_input_vars =
X
Xin Pan 已提交
219
        op->grad_input_vars_[0][framework::GradVarName(PyLayer::kFwdInp)];
X
Xin Pan 已提交
220
    auto& grad_output_vars =
X
Xin Pan 已提交
221
        op->grad_output_vars_[0][framework::GradVarName(PyLayer::kFwdOut)];
222 223 224 225 226 227 228

    for (const VarBase* inp : inputs) {
      grad_input_vars.push_back(inp->var_);
    }
    for (VarBase* out : outputs) {
      grad_input_vars.push_back(out->var_);
    }
M
minqiyang 已提交
229 230

    platform::CPUPlace place;
231
    for (VarBase* out : outputs) {
M
minqiyang 已提交
232
      grad_input_vars.push_back(out->grads_->var_);
233
      if (!grad_input_vars.back()->IsInitialized()) {
M
minqiyang 已提交
234 235 236
        // TODO(minqiyang): Add GPU support for PyLayer, only support CPU now
        InitVar(out->var_, grad_input_vars.back(),
                platform::DeviceContextPool::Instance().Get(place));
237 238
      }
    }
M
minqiyang 已提交
239

240
    for (const VarBase* inp : inputs) {
M
minqiyang 已提交
241
      grad_output_vars.push_back(inp->grads_->var_);
242
      if (!grad_output_vars.back()->IsInitialized()) {
M
minqiyang 已提交
243 244 245
        // TODO(minqiyang): Add GPU support for PyLayer, only support CPU now
        InitVar(inp->var_, grad_output_vars.back(),
                platform::DeviceContextPool::Instance().Get(place));
246 247 248 249 250 251
      }
    }
  }
  return outputs;
}

M
minqiyang 已提交
252
}  // namespace imperative
253
}  // namespace paddle