custom_tensor_test.cc 12.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "glog/logging.h"
#include "gtest/gtest.h"
17
#include "paddle/fluid/extension/include/ext_all.h"
18 19 20 21 22
#include "paddle/fluid/framework/custom_tensor_utils.h"
#include "paddle/fluid/framework/lod_tensor.h"

template <typename T>
paddle::Tensor InitCPUTensorForTest() {
C
Chen Weihang 已提交
23
  std::vector<int64_t> tensor_shape{5, 5};
24 25 26 27
  auto t1 = paddle::Tensor(paddle::PlaceType::kCPU);
  t1.reshape(tensor_shape);
  auto* p_data_ptr = t1.mutable_data<T>(paddle::PlaceType::kCPU);
  for (int64_t i = 0; i < t1.size(); i++) {
28
    p_data_ptr[i] = T(5);
29 30 31 32 33 34 35 36 37 38
  }
  return t1;
}

template <typename T>
void TestCopyTensor() {
  auto t1 = InitCPUTensorForTest<T>();
  auto t1_cpu_cp = t1.template copy_to<T>(paddle::PlaceType::kCPU);
  CHECK((paddle::PlaceType::kCPU == t1_cpu_cp.place()));
  for (int64_t i = 0; i < t1.size(); i++) {
39
    CHECK_EQ(t1_cpu_cp.template data<T>()[i], T(5));
40 41 42 43 44 45 46 47
  }
#ifdef PADDLE_WITH_CUDA
  VLOG(2) << "Do GPU copy test";
  auto t1_gpu_cp = t1_cpu_cp.template copy_to<T>(paddle::PlaceType::kGPU);
  CHECK((paddle::PlaceType::kGPU == t1_gpu_cp.place()));
  auto t1_gpu_cp_cp = t1_gpu_cp.template copy_to<T>(paddle::PlaceType::kGPU);
  CHECK((paddle::PlaceType::kGPU == t1_gpu_cp_cp.place()));
  auto t1_gpu_cp_cp_cpu =
48 49 50 51 52 53 54 55 56 57 58 59 60
      t1_gpu_cp_cp.template copy_to<T>(paddle::PlaceType::kCPU);
  CHECK((paddle::PlaceType::kCPU == t1_gpu_cp_cp_cpu.place()));
  for (int64_t i = 0; i < t1.size(); i++) {
    CHECK_EQ(t1_gpu_cp_cp_cpu.template data<T>()[i], T(5));
  }
#elif defined(PADDLE_WITH_HIP)
  VLOG(2) << "Do HIP copy test";
  auto t1_gpu_cp = t1_cpu_cp.template copy_to<T>(paddle::PlaceType::kHIP);
  CHECK((paddle::PlaceType::kHIP == t1_gpu_cp.place()));
  auto t1_gpu_cp_cp = t1_gpu_cp.template copy_to<T>(paddle::PlaceType::kHIP);
  CHECK((paddle::PlaceType::kHIP == t1_gpu_cp_cp.place()));
  auto t1_gpu_cp_cp_cpu =
      t1_gpu_cp_cp.template copy_to<T>(paddle::PlaceType::kCPU);
61 62
  CHECK((paddle::PlaceType::kCPU == t1_gpu_cp_cp_cpu.place()));
  for (int64_t i = 0; i < t1.size(); i++) {
63
    CHECK_EQ(t1_gpu_cp_cp_cpu.template data<T>()[i], T(5));
64 65 66 67 68
  }
#endif
}

void TestAPIPlace() {
C
Chen Weihang 已提交
69
  std::vector<int64_t> tensor_shape = {5, 5};
70 71 72 73 74
#ifdef PADDLE_WITH_CUDA
  auto t1 = paddle::Tensor(paddle::PlaceType::kGPU);
  t1.reshape(tensor_shape);
  t1.mutable_data<float>();
  CHECK((paddle::PlaceType::kGPU == t1.place()));
75 76 77 78 79
#elif defined(PADDLE_WITH_HIP)
  auto t1 = paddle::Tensor(paddle::PlaceType::kHIP);
  t1.reshape(tensor_shape);
  t1.mutable_data<float>();
  CHECK((paddle::PlaceType::kHIP == t1.place()));
80 81 82 83 84 85 86 87
#endif
  auto t2 = paddle::Tensor(paddle::PlaceType::kCPU);
  t2.reshape(tensor_shape);
  t2.mutable_data<float>();
  CHECK((paddle::PlaceType::kCPU == t2.place()));
}

void TestAPISizeAndShape() {
C
Chen Weihang 已提交
88
  std::vector<int64_t> tensor_shape = {5, 5};
89 90 91 92 93 94
  auto t1 = paddle::Tensor(paddle::PlaceType::kCPU);
  t1.reshape(tensor_shape);
  CHECK_EQ(t1.size(), 25);
  CHECK(t1.shape() == tensor_shape);
}

H
Hao Lin 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
void TestAPISlice() {
  std::vector<int64_t> tensor_shape_origin1 = {5, 5};
  std::vector<int64_t> tensor_shape_sub1 = {3, 5};
  std::vector<int64_t> tensor_shape_origin2 = {5, 5, 5};
  std::vector<int64_t> tensor_shape_sub2 = {1, 5, 5};
#ifdef PADDLE_WITH_CUDA
  auto t1 = paddle::Tensor(paddle::PlaceType::kGPU, tensor_shape_origin1);
  t1.mutable_data<float>();
  CHECK(t1.slice(0, 5).shape() == tensor_shape_origin1);
  CHECK(t1.slice(0, 3).shape() == tensor_shape_sub1);
  auto t2 = paddle::Tensor(paddle::PlaceType::kGPU, tensor_shape_origin2);
  t2.mutable_data<float>();
  CHECK(t2.slice(4, 5).shape() == tensor_shape_sub2);
#endif
  auto t3 = paddle::Tensor(paddle::PlaceType::kCPU, tensor_shape_origin1);
  t3.mutable_data<float>();
  CHECK(t3.slice(0, 5).shape() == tensor_shape_origin1);
  CHECK(t3.slice(0, 3).shape() == tensor_shape_sub1);
  auto t4 = paddle::Tensor(paddle::PlaceType::kCPU, tensor_shape_origin2);
  t4.mutable_data<float>();
  CHECK(t4.slice(4, 5).shape() == tensor_shape_sub2);

  // Test writing function for sliced tensor
  auto t = InitCPUTensorForTest<float>();
  auto t_sliced = t.slice(0, 1);
  auto* t_sliced_data_ptr = t_sliced.mutable_data<float>();
  for (int64_t i = 0; i < t_sliced.size(); i++) {
    t_sliced_data_ptr[i] += static_cast<float>(5);
  }
  auto* t_data_ptr = t.mutable_data<float>();
  for (int64_t i = 0; i < t_sliced.size(); i++) {
    CHECK_EQ(t_data_ptr[i], static_cast<float>(10));
  }
}

130 131
template <typename T>
paddle::DataType TestDtype() {
C
Chen Weihang 已提交
132
  std::vector<int64_t> tensor_shape = {5, 5};
133 134 135 136 137 138 139 140
  auto t1 = paddle::Tensor(paddle::PlaceType::kCPU);
  t1.reshape(tensor_shape);
  t1.template mutable_data<T>();
  return t1.type();
}

template <typename T>
void TestCast(paddle::DataType data_type) {
C
Chen Weihang 已提交
141
  std::vector<int64_t> tensor_shape = {5, 5};
142 143 144 145
  auto t1 = paddle::Tensor(paddle::PlaceType::kCPU);
  t1.reshape(tensor_shape);
  t1.template mutable_data<T>();
  auto t2 = t1.cast(data_type);
146
  CHECK(t2.type() == data_type);
147 148 149 150 151 152 153
#ifdef PADDLE_WITH_CUDA
  auto tg1 = paddle::Tensor(paddle::PlaceType::kGPU);
  tg1.reshape(tensor_shape);
  tg1.template mutable_data<T>();
  auto tg2 = tg1.cast(data_type);
  CHECK(tg2.type() == data_type);
#endif
154 155 156 157 158 159 160
}

void GroupTestCopy() {
  VLOG(2) << "Float cpu-cpu-gpu-gpu-cpu";
  TestCopyTensor<float>();
  VLOG(2) << "Double cpu-cpu-gpu-gpu-cpu";
  TestCopyTensor<double>();
161
  VLOG(2) << "int cpu-cpu-gpu-gpu-cpu";
162 163 164 165 166 167 168 169 170
  TestCopyTensor<int>();
  VLOG(2) << "int64 cpu-cpu-gpu-gpu-cpu";
  TestCopyTensor<int64_t>();
  VLOG(2) << "int16 cpu-cpu-gpu-gpu-cpu";
  TestCopyTensor<int16_t>();
  VLOG(2) << "int8 cpu-cpu-gpu-gpu-cpu";
  TestCopyTensor<int8_t>();
  VLOG(2) << "uint8 cpu-cpu-gpu-gpu-cpu";
  TestCopyTensor<uint8_t>();
171
  VLOG(2) << "complex<float> cpu-cpu-gpu-gpu-cpu";
172
  TestCopyTensor<paddle::complex64>();
173
  VLOG(2) << "complex<double> cpu-cpu-gpu-gpu-cpu";
174
  TestCopyTensor<paddle::complex128>();
175 176
  VLOG(2) << "Fp16 cpu-cpu-gpu-gpu-cpu";
  TestCopyTensor<paddle::float16>();
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
}

void GroupTestCast() {
  VLOG(2) << "int cast";
  TestCast<int>(paddle::DataType::FLOAT32);
  VLOG(2) << "int32 cast";
  TestCast<int32_t>(paddle::DataType::FLOAT32);
  VLOG(2) << "int64 cast";
  TestCast<int64_t>(paddle::DataType::FLOAT32);
  VLOG(2) << "double cast";
  TestCast<double>(paddle::DataType::FLOAT32);
  VLOG(2) << "bool cast";
  TestCast<bool>(paddle::DataType::FLOAT32);
  VLOG(2) << "uint8 cast";
  TestCast<uint8_t>(paddle::DataType::FLOAT32);
  VLOG(2) << "float cast";
  TestCast<float>(paddle::DataType::FLOAT32);
194
  VLOG(2) << "complex<float> cast";
195
  TestCast<paddle::complex64>(paddle::DataType::FLOAT32);
196
  VLOG(2) << "complex<double> cast";
197
  TestCast<paddle::complex128>(paddle::DataType::FLOAT32);
198 199
  VLOG(2) << "float16 cast";
  TestCast<paddle::float16>(paddle::DataType::FLOAT16);
200 201 202 203 204 205 206 207 208 209
}

void GroupTestDtype() {
  CHECK(TestDtype<float>() == paddle::DataType::FLOAT32);
  CHECK(TestDtype<double>() == paddle::DataType::FLOAT64);
  CHECK(TestDtype<int>() == paddle::DataType::INT32);
  CHECK(TestDtype<int64_t>() == paddle::DataType::INT64);
  CHECK(TestDtype<int16_t>() == paddle::DataType::INT16);
  CHECK(TestDtype<int8_t>() == paddle::DataType::INT8);
  CHECK(TestDtype<uint8_t>() == paddle::DataType::UINT8);
210 211
  CHECK(TestDtype<paddle::complex64>() == paddle::DataType::COMPLEX64);
  CHECK(TestDtype<paddle::complex128>() == paddle::DataType::COMPLEX128);
212
  CHECK(TestDtype<paddle::float16>() == paddle::DataType::FLOAT16);
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
}

void GroupTestDtypeConvert() {
  // enum -> proto
  CHECK(paddle::framework::CustomTensorUtils::ConvertEnumDTypeToInnerDType(
            paddle::DataType::FLOAT64) ==
        paddle::framework::proto::VarType::FP64);
  CHECK(paddle::framework::CustomTensorUtils::ConvertEnumDTypeToInnerDType(
            paddle::DataType::FLOAT32) ==
        paddle::framework::proto::VarType::FP32);
  CHECK(paddle::framework::CustomTensorUtils::ConvertEnumDTypeToInnerDType(
            paddle::DataType::UINT8) ==
        paddle::framework::proto::VarType::UINT8);
  CHECK(paddle::framework::CustomTensorUtils::ConvertEnumDTypeToInnerDType(
            paddle::DataType::INT8) == paddle::framework::proto::VarType::INT8);
  CHECK(paddle::framework::CustomTensorUtils::ConvertEnumDTypeToInnerDType(
            paddle::DataType::INT32) ==
        paddle::framework::proto::VarType::INT32);
  CHECK(paddle::framework::CustomTensorUtils::ConvertEnumDTypeToInnerDType(
            paddle::DataType::INT64) ==
        paddle::framework::proto::VarType::INT64);
  CHECK(paddle::framework::CustomTensorUtils::ConvertEnumDTypeToInnerDType(
            paddle::DataType::INT16) ==
        paddle::framework::proto::VarType::INT16);
  CHECK(paddle::framework::CustomTensorUtils::ConvertEnumDTypeToInnerDType(
            paddle::DataType::BOOL) == paddle::framework::proto::VarType::BOOL);
239 240 241 242 243 244
  CHECK(paddle::framework::CustomTensorUtils::ConvertEnumDTypeToInnerDType(
            paddle::DataType::COMPLEX64) ==
        paddle::framework::proto::VarType::COMPLEX64);
  CHECK(paddle::framework::CustomTensorUtils::ConvertEnumDTypeToInnerDType(
            paddle::DataType::COMPLEX128) ==
        paddle::framework::proto::VarType::COMPLEX128);
245 246 247
  CHECK(paddle::framework::CustomTensorUtils::ConvertEnumDTypeToInnerDType(
            paddle::DataType::FLOAT16) ==
        paddle::framework::proto::VarType::FP16);
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
  // proto -> enum
  CHECK(paddle::framework::CustomTensorUtils::ConvertInnerDTypeToEnumDType(
            paddle::framework::proto::VarType::FP64) ==
        paddle::DataType::FLOAT64);
  CHECK(paddle::framework::CustomTensorUtils::ConvertInnerDTypeToEnumDType(
            paddle::framework::proto::VarType::FP32) ==
        paddle::DataType::FLOAT32);
  CHECK(paddle::framework::CustomTensorUtils::ConvertInnerDTypeToEnumDType(
            paddle::framework::proto::VarType::INT64) ==
        paddle::DataType::INT64);
  CHECK(paddle::framework::CustomTensorUtils::ConvertInnerDTypeToEnumDType(
            paddle::framework::proto::VarType::INT32) ==
        paddle::DataType::INT32);
  CHECK(paddle::framework::CustomTensorUtils::ConvertInnerDTypeToEnumDType(
            paddle::framework::proto::VarType::INT8) == paddle::DataType::INT8);
  CHECK(paddle::framework::CustomTensorUtils::ConvertInnerDTypeToEnumDType(
            paddle::framework::proto::VarType::UINT8) ==
        paddle::DataType::UINT8);
  CHECK(paddle::framework::CustomTensorUtils::ConvertInnerDTypeToEnumDType(
            paddle::framework::proto::VarType::INT16) ==
        paddle::DataType::INT16);
  CHECK(paddle::framework::CustomTensorUtils::ConvertInnerDTypeToEnumDType(
            paddle::framework::proto::VarType::BOOL) == paddle::DataType::BOOL);
271 272 273 274 275 276
  CHECK(paddle::framework::CustomTensorUtils::ConvertInnerDTypeToEnumDType(
            paddle::framework::proto::VarType::COMPLEX64) ==
        paddle::DataType::COMPLEX64);
  CHECK(paddle::framework::CustomTensorUtils::ConvertInnerDTypeToEnumDType(
            paddle::framework::proto::VarType::COMPLEX128) ==
        paddle::DataType::COMPLEX128);
277 278 279
  CHECK(paddle::framework::CustomTensorUtils::ConvertInnerDTypeToEnumDType(
            paddle::framework::proto::VarType::FP16) ==
        paddle::DataType::FLOAT16);
280 281
}

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
void TestInitilized() {
  paddle::Tensor test_tensor(paddle::PlaceType::kCPU);
  CHECK(test_tensor.is_initialized() == false);
  test_tensor.reshape({1, 1});
  test_tensor.mutable_data<float>();
  CHECK(test_tensor.is_initialized() == true);
  float* tensor_data = test_tensor.data<float>();
  for (int i = 0; i < test_tensor.size(); i++) {
    tensor_data[i] = 0.5;
  }
  for (int i = 0; i < test_tensor.size(); i++) {
    CHECK(tensor_data[i] == 0.5);
  }
}

297 298 299 300 301 302 303 304 305
TEST(CustomTensor, copyTest) {
  VLOG(2) << "TestCopy";
  GroupTestCopy();
  VLOG(2) << "TestDtype";
  GroupTestDtype();
  VLOG(2) << "TestShape";
  TestAPISizeAndShape();
  VLOG(2) << "TestPlace";
  TestAPIPlace();
H
Hao Lin 已提交
306 307
  VLOG(2) << "TestSlice";
  TestAPISlice();
308 309 310 311
  VLOG(2) << "TestCast";
  GroupTestCast();
  VLOG(2) << "TestDtypeConvert";
  GroupTestDtypeConvert();
312 313
  VLOG(2) << "TestInitilized";
  TestInitilized();
314
}