unique_op.cu 18.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <thrust/adjacent_difference.h>
#include <thrust/device_vector.h>
#include <thrust/execution_policy.h>
#include <thrust/functional.h>
#include <thrust/scatter.h>
19
#include <thrust/sequence.h>
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
#include <thrust/unique.h>
#include <iostream>
#include <vector>
#include "paddle/fluid/framework/tensor_util.h"  // TensorToVector()
#include "paddle/fluid/operators/unique_op.h"    // TransComute()

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

// Binary function 'less than'
template <typename InT>
struct LessThan {
  int col;
  const InT* in_trans_data;

  LessThan(int64_t _col, const InT* _in_trans_data)
      : col(_col), in_trans_data(_in_trans_data) {}

  __device__ bool operator()(int64_t a, int64_t b) const {
    for (int i = 0; i < col; ++i) {
      InT lhs = in_trans_data[i + a * col];
      InT rhs = in_trans_data[i + b * col];
      if (lhs < rhs) {
        return true;
      } else if (lhs > rhs) {
        return false;
      }
    }
    return false;
  }
};

// Binary function 'equal_to'
template <typename InT>
struct BinaryEqual {
  int64_t col;
  const InT* in_trans_data;

  BinaryEqual(int64_t _col, const InT* _in_trans_data)
      : col(_col), in_trans_data(_in_trans_data) {}

  __device__ bool operator()(int64_t a, int64_t b) const {
    for (int64_t i = 0; i < col; ++i) {
      InT lhs = in_trans_data[i + a * col];
      InT rhs = in_trans_data[i + b * col];
      if (lhs != rhs) {
        return false;
      }
    }
    return true;
  }
};

// Binary function 'not_equal_to'
template <typename InT>
struct BinaryNotEqual {
  int64_t col;
  const InT* in_trans_data;

  BinaryNotEqual(int64_t _col, const InT* _in_trans_data)
      : col(_col), in_trans_data(_in_trans_data) {}

  __device__ bool operator()(int64_t a, int64_t b) const {
    for (int64_t i = 0; i < col; ++i) {
      InT lhs = in_trans_data[i + a * col];
      InT rhs = in_trans_data[i + b * col];
      if (lhs != rhs) {
        return true;
      }
    }
    return false;
  }
};

// index_select() function for Tensor
template <typename InT, typename IndexT>
void IndexSelect(const framework::ExecutionContext& context,
                 const Tensor& input, const Tensor& index, Tensor* output,
                 int dim) {
  auto input_dim = input.dims();
  auto input_dim_size = input_dim.size();
  auto output_dim = output->dims();

  auto slice_size = 1;
  for (auto i = dim + 1; i < input_dim_size; i++) {
    slice_size *= input_dim[i];
  }

  auto input_width = slice_size * input_dim[dim];
  auto output_width = slice_size * output_dim[dim];

  auto outer_nums = 1;
  for (auto i = 0; i < dim; i++) {
    outer_nums *= input_dim[i];
  }

  auto index_size = index.dims()[0];

  std::vector<InT> input_vec;
  std::vector<IndexT> index_vec;
  TensorToVector(input, context.device_context(), &input_vec);
  TensorToVector(index, context.device_context(), &index_vec);
  std::vector<InT> out_vec(output->numel());

  for (int i = 0; i < index_size; i++) {
    PADDLE_ENFORCE_GE(
        index_vec[i], 0,
        platform::errors::InvalidArgument(
            "Variable value (index) of OP(index_select) "
            "expected >= 0 and < %ld, but got %ld. Please check input "
            "value.",
            input_dim[dim], index_vec[i]));
    PADDLE_ENFORCE_LT(
        index_vec[i], input_dim[dim],
        platform::errors::InvalidArgument(
            "Variable value (index) of OP(index_select) "
            "expected >= 0 and < %ld, but got %ld. Please check input "
            "value.",
            input_dim[dim], index_vec[i]));
  }

  for (auto i = 0; i < outer_nums; i++) {
    auto input_start_offset = i * input_width;
    auto output_start_offset = i * output_width;

    for (auto j = 0; j < index_size; j++) {
      IndexT index_value = index_vec[j];
      for (auto k = 0; k < slice_size; k++) {
        out_vec[output_start_offset + j * slice_size + k] =
            input_vec[input_start_offset + index_value * slice_size + k];
      }
    }
  }
  output->mutable_data<InT>(context.GetPlace());
  framework::TensorFromVector(out_vec, context.device_context(), output);
  output->Resize(output_dim);
}

// The core logic of computing Unique for a flattend Tensor
template <typename InT, typename IndexT, typename equal_T, typename not_equal_T>
static void UniqueFlattendCUDATensor(const framework::ExecutionContext& context,
                                     const Tensor& in, Tensor* out,
                                     bool return_index, bool return_inverse,
                                     bool return_counts, equal_T equal,
                                     not_equal_T not_equal, int64_t num_input) {
  // 0. Prepration
  Tensor in_hat;
  framework::TensorCopy(in, context.GetPlace(), &in_hat);
  auto in_data_hat = in_hat.mutable_data<InT>(context.GetPlace());

  Tensor* sorted_indices = context.Output<Tensor>("Indices");
  sorted_indices->Resize(framework::make_ddim({num_input}));
  auto sorted_indices_data =
      sorted_indices->mutable_data<IndexT>(context.GetPlace());
  thrust::sequence(thrust::device, sorted_indices_data,
                   sorted_indices_data + num_input);
  thrust::sort_by_key(thrust::device, in_data_hat, in_data_hat + num_input,
                      sorted_indices_data);

Z
Zhou Wei 已提交
181
  // 1. Calculate op result: 'out'
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
  Tensor range;
  range.Resize(framework::make_ddim({num_input + 1}));
  auto range_data_ptr = range.mutable_data<IndexT>(context.GetPlace());
  thrust::sequence(thrust::device, range_data_ptr,
                   range_data_ptr + num_input + 1);
  framework::TensorCopy(in_hat, context.GetPlace(), out);
  int num_out;
  auto out_data = out->mutable_data<InT>(context.GetPlace());
  num_out = thrust::unique_by_key(thrust::device, out_data,
                                  out_data + num_input, range_data_ptr, equal)
                .first -
            out_data;
  out->Resize(framework::make_ddim({num_out}));

  // 3. Calculate inverse index: 'inverse'
  if (return_inverse) {
    Tensor* inverse = context.Output<Tensor>("Index");
    inverse->Resize(framework::make_ddim({num_input}));
    auto inverse_data = inverse->mutable_data<IndexT>(context.GetPlace());
    Tensor inv_loc;
    inv_loc.Resize(framework::make_ddim({num_input}));
    auto inv_loc_data_ptr = inv_loc.mutable_data<IndexT>(context.GetPlace());
    thrust::adjacent_difference(thrust::device, in_data_hat,
                                in_data_hat + num_input, inv_loc_data_ptr,
                                not_equal);
    thrust::device_ptr<IndexT> inv_loc_data_dev(inv_loc_data_ptr);
    inv_loc_data_dev[0] = 0;  // without device_ptr, segmentation fault
    thrust::inclusive_scan(thrust::device, inv_loc_data_ptr,
                           inv_loc_data_ptr + num_input, inv_loc_data_ptr);
    thrust::scatter(thrust::device, inv_loc_data_ptr,
                    inv_loc_data_ptr + num_input, sorted_indices_data,
                    inverse_data);
  }

  // 2. Calculate sorted index: 'sorted_indices'
  if (return_index) {
    Tensor indices;
    indices.Resize(framework::make_ddim({num_input}));
    auto indices_data_ptr = indices.mutable_data<IndexT>(context.GetPlace());
    thrust::copy(thrust::device, in_data_hat, in_data_hat + num_input,
                 indices_data_ptr);
    thrust::unique_by_key(thrust::device, indices_data_ptr,
                          indices_data_ptr + num_input, sorted_indices_data,
                          equal);
    sorted_indices->Resize(framework::make_ddim({num_out}));
  }

  // 4. Calculate 'counts'
  if (return_counts) {
    Tensor* counts = context.Output<Tensor>("Counts");
    counts->Resize(framework::make_ddim({num_out}));
    auto count_data = counts->mutable_data<IndexT>(context.GetPlace());
    // init 'count_data' as 0
    thrust::fill(thrust::device, count_data, count_data + num_out, 0);
    thrust::device_ptr<IndexT> range_data_ptr_dev(range_data_ptr);
    range_data_ptr_dev[num_out] = num_input;
    thrust::adjacent_difference(thrust::device, range_data_ptr + 1,
                                range_data_ptr + num_out + 1, count_data);
  }
}

// The logic of compute unique with axis required, it's a little different
// from above function
template <typename InT, typename IndexT, typename equal_T, typename not_equal_T>
static void ComputeUniqueDims(const framework::ExecutionContext& context,
                              Tensor* sorted_indices,
                              IndexT* sorted_indices_data, Tensor* out,
                              bool return_index, bool return_inverse,
                              bool return_counts, equal_T equal,
                              not_equal_T not_equal, int64_t row) {
  // 1. inverse indices: 'inverse'
  Tensor* inverse = context.Output<Tensor>("Index");
  inverse->Resize(framework::make_ddim({row}));
  auto inverse_data = inverse->mutable_data<IndexT>(context.GetPlace());
  Tensor inv_loc;
  inv_loc.Resize(framework::make_ddim({row}));
  auto inv_loc_data_ptr = inv_loc.mutable_data<IndexT>(context.GetPlace());
  thrust::adjacent_difference(thrust::device, sorted_indices_data,
                              sorted_indices_data + row, inv_loc_data_ptr,
                              not_equal);
  thrust::device_ptr<IndexT> inv_loc_data_dev(inv_loc_data_ptr);
  inv_loc_data_dev[0] = 0;
  thrust::inclusive_scan(thrust::device, inv_loc_data_ptr,
                         inv_loc_data_ptr + row, inv_loc_data_ptr);
  thrust::scatter(thrust::device, inv_loc_data_ptr, inv_loc_data_ptr + row,
                  sorted_indices_data, inverse_data);

  // 2. sorted indices
  Tensor range;
  range.Resize(framework::make_ddim({row + 1}));
  auto range_data_ptr = range.mutable_data<IndexT>(context.GetPlace());
  thrust::sequence(thrust::device, range_data_ptr, range_data_ptr + row + 1);
  int num_out;
  num_out =
      thrust::unique_by_key(thrust::device, sorted_indices_data,
                            sorted_indices_data + row, range_data_ptr, equal)
          .first -
      sorted_indices_data;
  thrust::device_ptr<IndexT> range_data_ptr_dev(range_data_ptr);
  range_data_ptr_dev[num_out] = row;
  sorted_indices->Resize(framework::make_ddim({num_out}));

  // 3. counts: 'counts'
  Tensor* counts = context.Output<Tensor>("Counts");
  counts->Resize(framework::make_ddim({num_out}));
  auto count_data = counts->mutable_data<IndexT>(context.GetPlace());
  thrust::fill(thrust::device, count_data, count_data + row, 0);
  thrust::adjacent_difference(thrust::device, range_data_ptr + 1,
                              range_data_ptr + row + 1, count_data);
}

// Calculate unique when 'axis' is set
template <typename DeviceContext, typename InT, typename IndexT>
static void UniqueDimsCUDATensor(const framework::ExecutionContext& context,
                                 const Tensor& in, Tensor* out,
                                 bool return_index, bool return_inverse,
                                 bool return_counts, int axis) {
  // 1. Transpose & reshape
  // Transpose tensor: eg. axis=1, [dim0, dim1, dim2] -> [dim1, dim0, dim2]
  std::vector<int> permute(in.dims().size());
  std::iota(permute.begin(), permute.end(), 0);
  permute[axis] = 0;
  permute[0] = axis;
  std::vector<int64_t> in_trans_dims_vec(framework::vectorize(in.dims()));
  in_trans_dims_vec[axis] = in.dims()[0];
  in_trans_dims_vec[0] = in.dims()[axis];
  framework::Tensor in_trans;
  framework::DDim in_trans_dims = framework::make_ddim(in_trans_dims_vec);
  in_trans.Resize(in_trans_dims);
  in_trans.mutable_data<InT>(context.GetPlace());
  auto& dev_ctx = context.cuda_device_context();
  TransCompute<DeviceContext, InT>(in.dims().size(),  // num of dims
                                   dev_ctx,           // device
                                   in,                // original Tensor
                                   &in_trans,         // Tensor after reshape
                                   permute);          // index of axis

  // Reshape tensor: eg. [dim1, dim0, dim2] -> [dim1, dim0*dim2]
  framework::DDim in_trans_flat_dims =
      framework::flatten_to_2d(in_trans_dims, 1);
  in_trans.Resize(in_trans_flat_dims);

  // now 'in_trans' is 2D
  int64_t col = in_trans.dims()[1];
  int64_t row = in_trans.dims()[0];
  const InT* in_trans_data = in_trans.data<InT>();

  Tensor* sorted_indices = context.Output<Tensor>("Indices");
  sorted_indices->Resize(framework::make_ddim({row}));
  auto sorted_indices_data =
      sorted_indices->mutable_data<IndexT>(context.GetPlace());

  // 2. Calculate 'sorted_indices', 'inverse', 'counts'
  // Init index and sort
  thrust::sequence(thrust::device, sorted_indices_data,
                   sorted_indices_data + row);
  thrust::sort(thrust::device, sorted_indices_data, sorted_indices_data + row,
               LessThan<InT>(col, in_trans_data));
  ComputeUniqueDims<InT, IndexT>(
      context, sorted_indices, sorted_indices_data, out, return_index,
      return_inverse, return_counts, BinaryEqual<InT>(col, in_trans_data),
      BinaryNotEqual<InT>(col, in_trans_data), row);

  // 3. Select indices and reshape back to get 'out'
  Tensor out_trans;
  std::vector<int64_t> out_trans_dims_vec = in_trans_dims_vec;
  out_trans_dims_vec[0] = sorted_indices->numel();
  out_trans.Resize(framework::make_ddim(out_trans_dims_vec));
  out_trans.mutable_data<InT>(context.GetPlace());

  IndexSelect<InT, IndexT>(context, in_trans, *sorted_indices, &out_trans, 0);

  std::swap(out_trans_dims_vec[0], out_trans_dims_vec[axis]);
  out->Resize(framework::make_ddim(out_trans_dims_vec));
  out->mutable_data<InT>(context.GetPlace());
  std::vector<framework::Tensor> out_trans_unbind = Unbind(out_trans);
  math::ConcatFunctor<DeviceContext, InT> concat_functor;
  concat_functor(dev_ctx, out_trans_unbind, 0, &out_trans);
  TransCompute<DeviceContext, InT>(out_trans.dims().size(), dev_ctx, out_trans,
                                   out, permute);
}

// functor for processing a flattend Tensor
template <typename DeviceContext, typename InT>
struct UniqueFlattendCUDAFunctor {
  const framework::ExecutionContext& ctx_;
  const Tensor& in_;
  Tensor* out_;
  const bool return_index_;
  const bool return_inverse_;
  const bool return_counts_;

  UniqueFlattendCUDAFunctor(const framework::ExecutionContext& context,
                            const Tensor& in, Tensor* out, bool return_index,
                            bool return_inverse, bool return_counts)
      : ctx_(context),
        in_(in),
        out_(out),
        return_index_(return_index),
        return_inverse_(return_inverse),
        return_counts_(return_counts) {}

  template <typename IndexT>
  void apply() const {
    UniqueFlattendCUDATensor<InT, IndexT>(
        ctx_, in_, out_, return_index_, return_inverse_, return_counts_,
        thrust::equal_to<InT>(), thrust::not_equal_to<InT>(), in_.numel());
  }
};

// functor for processing a multi-dimentional Tensor
template <typename DeviceContext, typename InT>
struct UniqueDimsCUDAFunctor {
  const framework::ExecutionContext& ctx_;
  const Tensor& in_;
  Tensor* out_;
  const int axis_;
  const bool return_index_;
  const bool return_inverse_;
  const bool return_counts_;

  UniqueDimsCUDAFunctor(const framework::ExecutionContext& context,
                        const Tensor& in, Tensor* out, const int axis,
                        bool return_index, bool return_inverse,
                        bool return_counts)
      : ctx_(context),
        in_(in),
        out_(out),
        axis_(axis),
        return_index_(return_index),
        return_inverse_(return_inverse),
        return_counts_(return_counts) {}

  template <typename IndexT>
  void apply() const {
    UniqueDimsCUDATensor<DeviceContext, InT, IndexT>(
        ctx_, in_, out_, return_index_, return_inverse_, return_counts_, axis_);
  }
};

// Unique_op CUDA implementation.
template <typename InT>
class UniqueKernel<platform::CUDADeviceContext, InT>
    : public framework::OpKernel<InT> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* x = context.Input<framework::Tensor>("X");
    auto* out = context.Output<framework::Tensor>("Out");
    auto data_type = static_cast<framework::proto::VarType::Type>(
        context.Attr<int>("dtype"));
    if (data_type == framework::proto::VarType::INT32) {
      PADDLE_ENFORCE_LE(
          x->numel() + 1, INT_MAX,
          platform::errors::InvalidArgument(
              "The number of elements in Input(X) should be less than or "
              "equal to INT_MAX, but received num is %d. Please set `dtype` to "
              "int64.",
              x->numel()));
    }

    std::vector<int> axis_vec = context.Attr<std::vector<int>>("axis");
    bool return_index = context.Attr<bool>("return_index");
    bool return_inverse = context.Attr<bool>("return_inverse");
    bool return_counts = context.Attr<bool>("return_counts");

    // if 'axis' is not required, flatten the Tensor.
    if (axis_vec.empty()) {
      framework::VisitDataTypeTiny(
          data_type,
          UniqueFlattendCUDAFunctor<platform::CUDADeviceContext, InT>(
              context, *x, out, return_index, return_inverse, return_counts));
    } else {
      // 'axis' is required.
      int axis = axis_vec[0];
      framework::VisitDataTypeTiny(
          data_type, UniqueDimsCUDAFunctor<platform::CUDADeviceContext, InT>(
                         context, *x, out, axis, return_index, return_inverse,
                         return_counts));
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_CUDA_KERNEL(
    unique, ops::UniqueKernel<paddle::platform::CUDADeviceContext, float>,
    ops::UniqueKernel<paddle::platform::CUDADeviceContext, double>,
    ops::UniqueKernel<paddle::platform::CUDADeviceContext, int32_t>,
    ops::UniqueKernel<paddle::platform::CUDADeviceContext, int64_t>);