interpolate_mkldnn_op.cc 6.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/operators/interpolate_op.h"
16
#include "paddle/phi/backends/onednn/onednn_reuse.h"
17 18 19 20 21 22 23 24

namespace paddle {
namespace operators {

using dnnl::memory;
using dnnl::primitive;
using dnnl::reorder;
using dnnl::resampling_forward;
25
using dnnl::stream;
26
using phi::DataLayout;
27
using OneDNNMemoryFormat = dnnl::memory::format_tag;
28 29

template <typename T = float>
30 31
class InterpolateOneDNNHandler
    : public phi::funcs::OneDNNHandlerNoCachingT<T, dnnl::resampling_forward> {
32
 public:
33
  InterpolateOneDNNHandler(const dnnl::algorithm algo,
34 35
                           const dnnl::engine engine,
                           platform::Place cpu_place,
36 37
                           const phi::DenseTensor* x,
                           phi::DenseTensor* out)
38
      : phi::funcs::OneDNNHandlerNoCachingT<T, dnnl::resampling_forward>(
39
            engine, cpu_place) {
40
    const auto dst_tz = phi::vectorize(out->dims());
41
    const auto dst_md = memory::desc(
42
        dst_tz, phi::funcs::OneDNNGetDataType<T>(), OneDNNMemoryFormat::any);
43 44
    this->AcquireForwardPrimitiveDescriptor(
        dnnl::prop_kind::forward_inference, algo, x->mem_desc(), dst_md);
45 46 47 48
  }
};

template <typename T = float>
49
class InterpolateOneDNNKernel : public framework::OpKernel<T> {
50 51
  std::vector<int> ComputeOutputShape(
      const framework::ExecutionContext& ctx) const {
52
    const auto* x = ctx.Input<phi::DenseTensor>("X");
53 54 55 56
    const auto& in_dims = x->dims();

    const framework::DDim in_dhw_dims =
        phi::slice_ddim(in_dims, 2, in_dims.size());
57 58

    std::vector<int> out_dims;
59
    out_dims.reserve(5);
60 61 62 63 64 65 66 67 68 69 70
    if (in_dhw_dims.size() == 1) {
      out_dims.push_back(ctx.Attr<int>("out_w"));
    } else if (in_dhw_dims.size() == 2) {
      out_dims.push_back(ctx.Attr<int>("out_h"));
      out_dims.push_back(ctx.Attr<int>("out_w"));
    } else if (in_dhw_dims.size() == 3) {
      out_dims.push_back(ctx.Attr<int>("out_d"));
      out_dims.push_back(ctx.Attr<int>("out_h"));
      out_dims.push_back(ctx.Attr<int>("out_w"));
    }

71 72
    auto list_new_size_tensor = ctx.MultiInput<phi::DenseTensor>("SizeTensor");
    auto out_size = ctx.Input<phi::DenseTensor>("OutSize");
73 74 75 76 77 78 79 80 81 82 83
    if (list_new_size_tensor.size() > 0) {
      auto new_size = get_new_shape(list_new_size_tensor);
      if (new_size.size() == out_dims.size()) {
        out_dims = new_size;
      }
    } else if (out_size != nullptr) {
      auto out_size_data = get_new_data_from_tensor<int>(out_size);
      if (out_size_data.size() == out_dims.size()) {
        out_dims = out_size_data;
      }
    } else {
84 85
      std::vector<float> scale;
      scale.reserve(3);
86
      auto scale_tensor = ctx.Input<phi::DenseTensor>("Scale");
87 88
      if (scale_tensor != nullptr) {
        auto scale_data = get_new_data_from_tensor<float>(scale_tensor);
89 90
        scale.resize(3, scale_data[0]);
        std::copy(scale_data.begin(), scale_data.end(), scale.begin());
91
      } else {
92 93 94 95 96 97 98 99
        std::string op_type = ctx.Type();

        if (op_type.find("v2") == std::string::npos) {  // v1
          scale.push_back(ctx.Attr<float>("scale"));
          scale.push_back(scale[0]);
          scale.push_back(scale[0]);
        } else {  // v2
          std::vector<float> scale_attr = ctx.Attr<std::vector<float>>("scale");
100 101 102 103
          if (scale_attr.size() > 0) {
            scale.resize(3, scale_attr[0]);
            std::copy(scale_attr.begin(), scale_attr.end(), scale.begin());
          }
104
        }
105
      }
106 107
      if (scale.size() == 3 && scale[0] > 0.0f && scale[1] > 0.0f &&
          scale[2] > 0.0f) {
108
        int j = 0;
109
        std::vector<int64_t> in_dhw_vec = phi::vectorize(in_dhw_dims);
110
        std::transform(
111 112 113
            in_dhw_vec.begin(),
            in_dhw_vec.end(),
            out_dims.begin(),
114
            [&](int64_t i) -> int { return static_cast<int>(i * scale[j++]); });
115 116 117
      }
    }

118 119 120 121 122 123 124
    PADDLE_ENFORCE_GT(
        std::all_of(
            out_dims.begin(), out_dims.end(), [](int i) { return i > 0; }),
        0,
        platform::errors::InvalidArgument(
            "out_d, out_h, out_w of Op(interpolate) "
            "should be greater than 0."));
125

126 127
    const std::vector<int64_t> nc_dims = {in_dims[0], in_dims[1]};
    out_dims.insert(out_dims.begin(), nc_dims.begin(), nc_dims.end());
128 129 130 131 132
    return out_dims;
  }

 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
133
    const auto& dev_ctx = ctx.template device_context<phi::OneDNNContext>();
134
    const auto& onednn_engine = dev_ctx.GetEngine();
135

136 137
    const auto* x = ctx.Input<phi::DenseTensor>("X");
    auto* out = ctx.Output<phi::DenseTensor>("Out");
138

139 140 141 142
    const auto interp_method = ctx.Attr<std::string>("interp_method");
    const dnnl::algorithm algo = (interp_method == "nearest")
                                     ? dnnl::algorithm::resampling_nearest
                                     : dnnl::algorithm::resampling_linear;
143

144
    const auto out_dims_vec = ComputeOutputShape(ctx);
145
    framework::DDim dim_out = phi::make_ddim(out_dims_vec);
146
    out->Resize(dim_out);
147

148
    InterpolateOneDNNHandler<T> handler(
149
        algo, onednn_engine, ctx.GetPlace(), x, out);
150 151

    auto src_memory_p = handler.AcquireSrcMemory(x);
152
    auto dst_memory_p = handler.AcquireDstMemory(out);
153 154 155 156

    auto resampling_prim = handler.AcquireForwardPrimitive();
    const std::unordered_map<int, dnnl::memory> args = {
        {DNNL_ARG_SRC, *src_memory_p}, {DNNL_ARG_DST, *dst_memory_p}};
157
    auto& astream = phi::OneDNNContext::tls().get_stream();
158

159 160 161
    resampling_prim->execute(astream, args);
    astream.wait();

162
    out->set_mem_desc(dst_memory_p->get_desc());
163 164 165 166 167 168 169 170
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

171 172
REGISTER_OP_KERNEL(nearest_interp,
                   MKLDNN,
173
                   ::phi::CPUPlace,
174 175 176
                   ops::InterpolateOneDNNKernel<float>,
                   ops::InterpolateOneDNNKernel<int8_t>,
                   ops::InterpolateOneDNNKernel<uint8_t>);
177 178
REGISTER_OP_KERNEL(bilinear_interp,
                   MKLDNN,
179
                   ::phi::CPUPlace,
180
                   ops::InterpolateOneDNNKernel<float>);