generate_proposal_labels_op.cc 31.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <math.h>
#include <algorithm>
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
17
#include "paddle/fluid/operators/detection/bbox_util.h"
18
#include "paddle/fluid/operators/gather.h"
C
chengduo 已提交
19
#include "paddle/fluid/operators/math/concat_and_split.h"
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
#include "paddle/fluid/operators/math/math_function.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
const int kBoxDim = 4;

template <typename T>
void AppendRois(LoDTensor* out, int64_t offset, Tensor* to_add) {
  auto* out_data = out->data<T>();
  auto* to_add_data = to_add->data<T>();
  memcpy(out_data + offset, to_add_data, to_add->numel() * sizeof(T));
}

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
// Filter the ground-truth in RoIs and the RoIs with non-positive area.
// The ground-truth has max overlap with itself so the max_overlap is 1
// and the corresponding RoI will be removed.
template <typename T>
void FilterRoIs(const platform::DeviceContext& ctx, const Tensor& rpn_rois,
                const Tensor& max_overlap, Tensor* keep) {
  const T* rpn_rois_dt = rpn_rois.data<T>();
  const T* max_overlap_dt = max_overlap.data<T>();
  int rois_num = max_overlap.numel();
  keep->Resize({rois_num});
  int* keep_data = keep->mutable_data<int>(ctx.GetPlace());
  int keep_len = 0;
  for (int i = 0; i < rois_num; ++i) {
    if ((rpn_rois_dt[i * 4 + 2] - rpn_rois_dt[i * 4 + 0] + 1) > 0 &&
        (rpn_rois_dt[i * 4 + 3] - rpn_rois_dt[i * 4 + 1] + 1) > 0 &&
        max_overlap_dt[i] < 1.) {
      keep_data[keep_len++] = i;
    }
  }
  keep->Resize({keep_len});
}

58 59 60 61 62
class GenerateProposalLabelsOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("RpnRois"), true,
        platform::errors::NotFound("Input(RpnRois) shouldn't be null."));
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("GtClasses"), true,
        platform::errors::NotFound("Input(GtClasses) shouldn't be null."));
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("IsCrowd"), true,
        platform::errors::NotFound("Input(IsCrowd) shouldn't be null."));
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("GtBoxes"), true,
        platform::errors::NotFound("Input(GtBoxes) shouldn't be null."));
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("ImInfo"), true,
        platform::errors::NotFound("Input(ImInfo) shouldn't be null."));

    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("Rois"), true,
        platform::errors::NotFound(
            "Output(Rois) of GenerateProposalLabelsOp should not be null"));
    PADDLE_ENFORCE_EQ(ctx->HasOutput("LabelsInt32"), true,
                      platform::errors::NotFound("Output(LabelsInt32) of "
                                                 "GenerateProposalLabelsOp "
                                                 "should not be null"));
    PADDLE_ENFORCE_EQ(ctx->HasOutput("BboxTargets"), true,
                      platform::errors::NotFound("Output(BboxTargets) of "
                                                 "GenerateProposalLabelsOp "
                                                 "should not be null"));
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("BboxInsideWeights"), true,
        platform::errors::NotFound(
            "Output(BboxInsideWeights) of GenerateProposalLabelsOp "
            "should not be null"));
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("BboxOutsideWeights"), true,
        platform::errors::NotFound(
            "Output(BboxOutsideWeights) of GenerateProposalLabelsOp "
            "should not be null"));
101 102 103

    auto rpn_rois_dims = ctx->GetInputDim("RpnRois");
    auto gt_boxes_dims = ctx->GetInputDim("GtBoxes");
104
    auto im_info_dims = ctx->GetInputDim("ImInfo");
105 106

    PADDLE_ENFORCE_EQ(rpn_rois_dims.size(), 2,
107 108 109 110
                      platform::errors::InvalidArgument(
                          "The dimensions size of Input(RpnRois) must be 2. "
                          "But received dimensions size=[%d], dimensions=[%s].",
                          rpn_rois_dims.size(), rpn_rois_dims));
111
    PADDLE_ENFORCE_EQ(gt_boxes_dims.size(), 2,
112 113 114 115
                      platform::errors::InvalidArgument(
                          "The dimensions size of Input(GtBoxes) must be 2. "
                          "But received dimensions size=[%d], dimensions=[%s].",
                          gt_boxes_dims.size(), gt_boxes_dims));
116
    PADDLE_ENFORCE_EQ(im_info_dims.size(), 2,
117 118 119 120
                      platform::errors::InvalidArgument(
                          "The dimensions size of Input(ImInfo) must be 2. But "
                          "received dimensions size=[%d], dimensions=[%s].",
                          im_info_dims.size(), im_info_dims));
121 122

    int class_nums = ctx->Attrs().Get<int>("class_nums");
123 124 125 126 127 128 129 130
    bool is_cascade_rcnn = ctx->Attrs().Get<bool>("is_cascade_rcnn");
    if (is_cascade_rcnn) {
      PADDLE_ENFORCE_EQ(
          ctx->HasInput("MaxOverlap"), true,
          platform::errors::NotFound(
              "Input(MaxOverlap) of GenerateProposalLabelsOp "
              "should not be null when is_cascade_rcnn is True."));
    }
131 132

    ctx->SetOutputDim("Rois", {-1, 4});
133
    ctx->SetOutputDim("LabelsInt32", {-1, 1});
134 135 136
    ctx->SetOutputDim("BboxTargets", {-1, 4 * class_nums});
    ctx->SetOutputDim("BboxInsideWeights", {-1, 4 * class_nums});
    ctx->SetOutputDim("BboxOutsideWeights", {-1, 4 * class_nums});
137
    ctx->SetOutputDim("MaxOverlapWithGT", {-1});
138 139 140 141 142
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
143
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "RpnRois");
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
    return framework::OpKernelType(data_type, platform::CPUPlace());
  }
};

template <typename T>
void Concat(const platform::CPUDeviceContext& context,
            const Tensor& in_tensor_a, const Tensor& in_tensor_b,
            Tensor* out_tensor) {
  int axis = 0;
  std::vector<Tensor> inputs;
  inputs.emplace_back(in_tensor_a);
  inputs.emplace_back(in_tensor_b);
  math::ConcatFunctor<platform::CPUDeviceContext, T> concat_functor;
  concat_functor(context, inputs, axis, out_tensor);
}

template <typename T>
std::vector<std::vector<int>> SampleFgBgGt(
    const platform::CPUDeviceContext& context, Tensor* iou,
163 164
    const Tensor& is_crowd, const int batch_size_per_im,
    const float fg_fraction, const float fg_thresh, const float bg_thresh_hi,
165 166
    const float bg_thresh_lo, std::minstd_rand engine, const bool use_random,
    const bool is_cascade_rcnn, const Tensor& rpn_rois) {
167 168
  std::vector<int> fg_inds;
  std::vector<int> bg_inds;
169
  std::vector<int> mapped_gt_inds;
170 171 172
  int64_t gt_num = is_crowd.numel();
  const int* crowd_data = is_crowd.data<int>();
  T* proposal_to_gt_overlaps = iou->data<T>();
173 174 175 176 177 178
  int64_t row = iou->dims()[0];
  int64_t col = iou->dims()[1];
  float epsilon = 0.00001;
  // Follow the Faster RCNN's implementation
  for (int64_t i = 0; i < row; ++i) {
    const T* v = proposal_to_gt_overlaps + i * col;
179

180
    T max_overlap = *std::max_element(v, v + col);
181 182 183
    if ((i < gt_num) && (crowd_data[i])) {
      max_overlap = -1.0;
    }
184 185
    if (max_overlap >= fg_thresh) {
      // fg mapped gt label index
186 187 188 189 190
      for (int64_t j = 0; j < col; ++j) {
        T val = proposal_to_gt_overlaps[i * col + j];
        auto diff = std::abs(max_overlap - val);
        if (diff < epsilon) {
          fg_inds.emplace_back(i);
191
          mapped_gt_inds.emplace_back(j);
192 193 194
          break;
        }
      }
195 196
    } else if ((max_overlap >= bg_thresh_lo) && (max_overlap < bg_thresh_hi)) {
      bg_inds.emplace_back(i);
197
    } else {
198
      continue;
199 200 201
    }
  }

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
  std::vector<std::vector<int>> res;
  if (is_cascade_rcnn) {
    res.emplace_back(fg_inds);
    res.emplace_back(bg_inds);
    res.emplace_back(mapped_gt_inds);
  } else {
    // Reservoir Sampling
    // sampling fg
    std::uniform_real_distribution<float> uniform(0, 1);
    int fg_rois_per_im = std::floor(batch_size_per_im * fg_fraction);
    int fg_rois_this_image = fg_inds.size();
    int fg_rois_per_this_image = std::min(fg_rois_per_im, fg_rois_this_image);
    if (use_random) {
      const int64_t fg_size = static_cast<int64_t>(fg_inds.size());
      if (fg_size > fg_rois_per_this_image) {
        for (int64_t i = fg_rois_per_this_image; i < fg_size; ++i) {
          int rng_ind = std::floor(uniform(engine) * i);
          if (rng_ind < fg_rois_per_this_image) {
            std::iter_swap(fg_inds.begin() + rng_ind, fg_inds.begin() + i);
            std::iter_swap(mapped_gt_inds.begin() + rng_ind,
                           mapped_gt_inds.begin() + i);
          }
224
        }
225 226
      }
    }
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
    std::vector<int> new_fg_inds(fg_inds.begin(),
                                 fg_inds.begin() + fg_rois_per_this_image);
    std::vector<int> new_gt_inds(
        mapped_gt_inds.begin(),
        mapped_gt_inds.begin() + fg_rois_per_this_image);
    // sampling bg
    int bg_rois_per_image = batch_size_per_im - fg_rois_per_this_image;
    int bg_rois_this_image = bg_inds.size();
    int bg_rois_per_this_image =
        std::min(bg_rois_per_image, bg_rois_this_image);
    if (use_random) {
      const int64_t bg_size = static_cast<int64_t>(bg_inds.size());
      if (bg_size > bg_rois_per_this_image) {
        for (int64_t i = bg_rois_per_this_image; i < bg_size; ++i) {
          int rng_ind = std::floor(uniform(engine) * i);
          if (rng_ind < fg_rois_per_this_image)
            std::iter_swap(bg_inds.begin() + rng_ind, bg_inds.begin() + i);
        }
245
      }
246
    }
247 248 249 250 251 252
    std::vector<int> new_bg_inds(bg_inds.begin(),
                                 bg_inds.begin() + bg_rois_per_this_image);
    //
    res.emplace_back(new_fg_inds);
    res.emplace_back(new_bg_inds);
    res.emplace_back(new_gt_inds);
253
  }
254

255 256 257 258 259
  return res;
}

template <typename T>
void GatherBoxesLabels(const platform::CPUDeviceContext& context,
260 261
                       const Tensor& boxes, const Tensor& max_overlap,
                       const Tensor& gt_boxes, const Tensor& gt_classes,
262 263 264
                       const std::vector<int>& fg_inds,
                       const std::vector<int>& bg_inds,
                       const std::vector<int>& gt_inds, Tensor* sampled_boxes,
265 266
                       Tensor* sampled_labels, Tensor* sampled_gts,
                       Tensor* sampled_max_overlap) {
267 268 269 270 271 272
  int fg_num = fg_inds.size();
  int bg_num = bg_inds.size();
  Tensor fg_inds_t, bg_inds_t, gt_box_inds_t, gt_label_inds_t;
  int* fg_inds_data = fg_inds_t.mutable_data<int>({fg_num}, context.GetPlace());
  int* bg_inds_data = bg_inds_t.mutable_data<int>({bg_num}, context.GetPlace());
  int* gt_box_inds_data =
273
      gt_box_inds_t.mutable_data<int>({fg_num}, context.GetPlace());
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
  int* gt_label_inds_data =
      gt_label_inds_t.mutable_data<int>({fg_num}, context.GetPlace());
  std::copy(fg_inds.begin(), fg_inds.end(), fg_inds_data);
  std::copy(bg_inds.begin(), bg_inds.end(), bg_inds_data);
  std::copy(gt_inds.begin(), gt_inds.end(), gt_box_inds_data);
  std::copy(gt_inds.begin(), gt_inds.end(), gt_label_inds_data);

  Tensor fg_boxes, bg_boxes, fg_labels, bg_labels;
  fg_boxes.mutable_data<T>({fg_num, kBoxDim}, context.GetPlace());
  CPUGather<T>(context, boxes, fg_inds_t, &fg_boxes);
  bg_boxes.mutable_data<T>({bg_num, kBoxDim}, context.GetPlace());
  CPUGather<T>(context, boxes, bg_inds_t, &bg_boxes);
  Concat<T>(context, fg_boxes, bg_boxes, sampled_boxes);
  CPUGather<T>(context, gt_boxes, gt_box_inds_t, sampled_gts);
  fg_labels.mutable_data<int>({fg_num}, context.GetPlace());
  CPUGather<int>(context, gt_classes, gt_label_inds_t, &fg_labels);
  bg_labels.mutable_data<int>({bg_num}, context.GetPlace());
  math::set_constant(context, &bg_labels, 0);
  Concat<int>(context, fg_labels, bg_labels, sampled_labels);
293 294 295 296 297 298 299

  Tensor fg_max_overlap, bg_max_overlap;
  fg_max_overlap.mutable_data<T>({fg_num}, context.GetPlace());
  CPUGather<T>(context, max_overlap, fg_inds_t, &fg_max_overlap);
  bg_max_overlap.mutable_data<T>({bg_num}, context.GetPlace());
  CPUGather<T>(context, max_overlap, bg_inds_t, &bg_max_overlap);
  Concat<T>(context, fg_max_overlap, bg_max_overlap, sampled_max_overlap);
300 301 302 303
}

template <typename T>
std::vector<Tensor> SampleRoisForOneImage(
304 305 306 307
    const platform::CPUDeviceContext& context, const Tensor& rpn_rois_in,
    const Tensor& gt_classes, const Tensor& is_crowd, const Tensor& gt_boxes,
    const Tensor& im_info, const int batch_size_per_im, const float fg_fraction,
    const float fg_thresh, const float bg_thresh_hi, const float bg_thresh_lo,
308
    const std::vector<float>& bbox_reg_weights, const int class_nums,
309
    std::minstd_rand engine, bool use_random, bool is_cascade_rcnn,
310
    bool is_cls_agnostic, const Tensor& max_overlap) {
311
  // 1.1 map to original image
312
  auto im_scale = im_info.data<T>()[2];
313 314 315 316
  Tensor rpn_rois;
  rpn_rois.mutable_data<T>(rpn_rois_in.dims(), context.GetPlace());
  const T* rpn_rois_in_dt = rpn_rois_in.data<T>();
  T* rpn_rois_dt = rpn_rois.data<T>();
317

318
  for (int i = 0; i < rpn_rois.numel(); ++i) {
319 320 321 322 323 324 325 326 327 328 329 330 331 332
    rpn_rois_dt[i] = rpn_rois_in_dt[i] / im_scale;
  }

  int proposals_num = 1;

  if (is_cascade_rcnn) {
    Tensor keep;
    FilterRoIs<T>(context, rpn_rois, max_overlap, &keep);
    Tensor roi_filter;
    // Tensor box_filter;
    if (keep.numel() == 0) {
      math::SetConstant<platform::CPUDeviceContext, T> set_zero;
      roi_filter.mutable_data<T>({proposals_num, kBoxDim}, context.GetPlace());
      set_zero(context, &roi_filter, static_cast<T>(0));
333
    } else {
334 335 336
      proposals_num = keep.numel();
      roi_filter.mutable_data<T>({proposals_num, kBoxDim}, context.GetPlace());
      CPUGather<T>(context, rpn_rois, keep, &roi_filter);
337
    }
338 339 340 341 342
    T* roi_filter_dt = roi_filter.data<T>();
    memcpy(rpn_rois_dt, roi_filter_dt, roi_filter.numel() * sizeof(T));
    rpn_rois.Resize(roi_filter.dims());
  } else {
    proposals_num = rpn_rois.dims()[0];
343
  }
344
  // 1.2 compute overlaps
345 346
  proposals_num += gt_boxes.dims()[0];

347
  Tensor proposal_to_gt_overlaps;
348
  proposal_to_gt_overlaps.mutable_data<T>({proposals_num, gt_boxes.dims()[0]},
349 350
                                          context.GetPlace());

351 352
  Tensor boxes;
  boxes.mutable_data<T>({proposals_num, kBoxDim}, context.GetPlace());
353
  Concat<T>(context, gt_boxes, rpn_rois, &boxes);
354
  BboxOverlaps<T>(boxes, gt_boxes, &proposal_to_gt_overlaps);
355 356 357 358 359 360 361

  Tensor proposal_with_max_overlap;
  proposal_with_max_overlap.mutable_data<T>({proposals_num},
                                            context.GetPlace());

  MaxIoU<T>(proposal_to_gt_overlaps, &proposal_with_max_overlap);

362
  // Generate proposal index
363 364 365 366
  std::vector<std::vector<int>> fg_bg_gt =
      SampleFgBgGt<T>(context, &proposal_to_gt_overlaps, is_crowd,
                      batch_size_per_im, fg_fraction, fg_thresh, bg_thresh_hi,
                      bg_thresh_lo, engine, use_random, is_cascade_rcnn, boxes);
367 368
  std::vector<int> fg_inds = fg_bg_gt[0];
  std::vector<int> bg_inds = fg_bg_gt[1];
369
  std::vector<int> mapped_gt_inds = fg_bg_gt[2];  // mapped_gt_labels
370 371

  // Gather boxes and labels
372
  Tensor sampled_boxes, sampled_labels, sampled_gts, sampled_max_overlap;
373 374 375
  int fg_num = fg_inds.size();
  int bg_num = bg_inds.size();
  int boxes_num = fg_num + bg_num;
376 377 378
  framework::DDim bbox_dim({boxes_num, kBoxDim});
  sampled_boxes.mutable_data<T>(bbox_dim, context.GetPlace());
  sampled_labels.mutable_data<int>({boxes_num}, context.GetPlace());
379
  sampled_gts.mutable_data<T>({fg_num, kBoxDim}, context.GetPlace());
380 381 382 383 384
  sampled_max_overlap.mutable_data<T>({boxes_num}, context.GetPlace());
  GatherBoxesLabels<T>(context, boxes, proposal_with_max_overlap, gt_boxes,
                       gt_classes, fg_inds, bg_inds, mapped_gt_inds,
                       &sampled_boxes, &sampled_labels, &sampled_gts,
                       &sampled_max_overlap);
385 386 387 388

  // Compute targets
  Tensor bbox_targets_single;
  bbox_targets_single.mutable_data<T>(bbox_dim, context.GetPlace());
389 390
  BoxToDelta<T>(fg_num, sampled_boxes, sampled_gts, bbox_reg_weights.data(),
                false, &bbox_targets_single);
391 392 393 394 395 396

  // Scale rois
  Tensor sampled_rois;
  sampled_rois.mutable_data<T>(sampled_boxes.dims(), context.GetPlace());
  auto sampled_rois_et = framework::EigenTensor<T, 2>::From(sampled_rois);
  auto sampled_boxes_et = framework::EigenTensor<T, 2>::From(sampled_boxes);
397
  sampled_rois_et = sampled_boxes_et * im_scale;
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417

  // Expand box targets
  Tensor bbox_targets, bbox_inside_weights, bbox_outside_weights;
  framework::DDim bbox_expand_dim({boxes_num, kBoxDim * class_nums});
  bbox_targets.mutable_data<T>(bbox_expand_dim, context.GetPlace());
  bbox_inside_weights.mutable_data<T>(bbox_expand_dim, context.GetPlace());
  bbox_outside_weights.mutable_data<T>(bbox_expand_dim, context.GetPlace());
  math::set_constant(context, &bbox_targets, 0.0);
  math::set_constant(context, &bbox_inside_weights, 0.0);
  math::set_constant(context, &bbox_outside_weights, 0.0);

  auto* bbox_targets_single_data = bbox_targets_single.data<T>();
  auto* sampled_labels_data = sampled_labels.data<int>();
  auto* bbox_targets_data = bbox_targets.data<T>();
  auto* bbox_inside_weights_data = bbox_inside_weights.data<T>();
  auto* bbox_outside_weights_data = bbox_outside_weights.data<T>();
  int width = kBoxDim * class_nums;
  for (int64_t i = 0; i < boxes_num; ++i) {
    int label = sampled_labels_data[i];
    if (label > 0) {
418 419 420
      if (is_cls_agnostic) {
        label = 1;
      }
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
      int dst_idx = i * width + kBoxDim * label;
      int src_idx = kBoxDim * i;
      bbox_targets_data[dst_idx] = bbox_targets_single_data[src_idx];
      bbox_targets_data[dst_idx + 1] = bbox_targets_single_data[src_idx + 1];
      bbox_targets_data[dst_idx + 2] = bbox_targets_single_data[src_idx + 2];
      bbox_targets_data[dst_idx + 3] = bbox_targets_single_data[src_idx + 3];
      bbox_inside_weights_data[dst_idx] = 1;
      bbox_inside_weights_data[dst_idx + 1] = 1;
      bbox_inside_weights_data[dst_idx + 2] = 1;
      bbox_inside_weights_data[dst_idx + 3] = 1;
      bbox_outside_weights_data[dst_idx] = 1;
      bbox_outside_weights_data[dst_idx + 1] = 1;
      bbox_outside_weights_data[dst_idx + 2] = 1;
      bbox_outside_weights_data[dst_idx + 3] = 1;
    }
  }
  std::vector<Tensor> res;
  res.emplace_back(sampled_rois);
  res.emplace_back(sampled_labels);
  res.emplace_back(bbox_targets);
  res.emplace_back(bbox_inside_weights);
  res.emplace_back(bbox_outside_weights);
443
  res.emplace_back(sampled_max_overlap);
444 445 446 447 448 449 450 451 452
  return res;
}

template <typename T>
class GenerateProposalLabelsKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* rpn_rois = context.Input<LoDTensor>("RpnRois");
    auto* gt_classes = context.Input<LoDTensor>("GtClasses");
453
    auto* is_crowd = context.Input<LoDTensor>("IsCrowd");
454
    auto* gt_boxes = context.Input<LoDTensor>("GtBoxes");
455
    auto* im_info = context.Input<LoDTensor>("ImInfo");
456 457 458 459 460 461 462

    auto* rois = context.Output<LoDTensor>("Rois");
    auto* labels_int32 = context.Output<LoDTensor>("LabelsInt32");
    auto* bbox_targets = context.Output<LoDTensor>("BboxTargets");
    auto* bbox_inside_weights = context.Output<LoDTensor>("BboxInsideWeights");
    auto* bbox_outside_weights =
        context.Output<LoDTensor>("BboxOutsideWeights");
463
    auto* max_overlap_with_gt = context.Output<LoDTensor>("MaxOverlapWithGT");
464 465 466 467 468 469 470 471 472

    int batch_size_per_im = context.Attr<int>("batch_size_per_im");
    float fg_fraction = context.Attr<float>("fg_fraction");
    float fg_thresh = context.Attr<float>("fg_thresh");
    float bg_thresh_hi = context.Attr<float>("bg_thresh_hi");
    float bg_thresh_lo = context.Attr<float>("bg_thresh_lo");
    std::vector<float> bbox_reg_weights =
        context.Attr<std::vector<float>>("bbox_reg_weights");
    int class_nums = context.Attr<int>("class_nums");
473
    bool use_random = context.Attr<bool>("use_random");
474 475
    bool is_cascade_rcnn = context.Attr<bool>("is_cascade_rcnn");
    bool is_cls_agnostic = context.Attr<bool>("is_cls_agnostic");
476 477 478 479 480 481
    PADDLE_ENFORCE_EQ(
        rpn_rois->lod().size(), 1UL,
        platform::errors::InvalidArgument(
            "GenerateProposalLabelsOp rpn_rois needs 1 level of LoD. But "
            "received level of LoD is [%d], LoD is [%s].",
            rpn_rois->lod().size(), rpn_rois->lod()));
482 483
    PADDLE_ENFORCE_EQ(
        gt_classes->lod().size(), 1UL,
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
        platform::errors::InvalidArgument(
            "GenerateProposalLabelsOp gt_classes needs 1 level of LoD. But "
            "received level of LoD is [%d], LoD is [%s].",
            gt_classes->lod().size(), gt_classes->lod()));
    PADDLE_ENFORCE_EQ(
        is_crowd->lod().size(), 1UL,
        platform::errors::InvalidArgument(
            "GenerateProposalLabelsOp is_crowd needs 1 level of LoD. But "
            "received level of LoD is [%d], LoD is [%s].",
            is_crowd->lod().size(), is_crowd->lod()));
    PADDLE_ENFORCE_EQ(
        gt_boxes->lod().size(), 1UL,
        platform::errors::InvalidArgument(
            "GenerateProposalLabelsOp gt_boxes needs 1 level of LoD. But "
            "received level of LoD is [%d], LoD is [%s].",
            gt_boxes->lod().size(), gt_boxes->lod()));
500
    int64_t n = static_cast<int64_t>(rpn_rois->lod().back().size() - 1);
501 502 503 504 505 506 507 508
    int64_t rois_num = rpn_rois->dims()[0];
    int64_t gts_num = gt_boxes->dims()[0];
    int64_t init_num =
        is_cascade_rcnn ? rois_num + gts_num : n * batch_size_per_im;

    rois->mutable_data<T>({init_num, kBoxDim}, context.GetPlace());
    labels_int32->mutable_data<int>({init_num, 1}, context.GetPlace());
    bbox_targets->mutable_data<T>({init_num, kBoxDim * class_nums},
509
                                  context.GetPlace());
510 511 512 513 514 515
    bbox_inside_weights->mutable_data<T>({init_num, kBoxDim * class_nums},
                                         context.GetPlace());
    bbox_outside_weights->mutable_data<T>({init_num, kBoxDim * class_nums},
                                          context.GetPlace());
    max_overlap_with_gt->Resize({init_num});
    max_overlap_with_gt->mutable_data<T>(context.GetPlace());
516 517 518

    std::random_device rnd;
    std::minstd_rand engine;
519
    int seed = rnd();
520 521 522 523 524 525 526 527 528 529
    engine.seed(seed);

    framework::LoD lod;
    std::vector<size_t> lod0(1, 0);

    int64_t num_rois = 0;
    auto& dev_ctx = context.device_context<platform::CPUDeviceContext>();

    auto rpn_rois_lod = rpn_rois->lod().back();
    auto gt_classes_lod = gt_classes->lod().back();
530
    auto is_crowd_lod = is_crowd->lod().back();
531
    auto gt_boxes_lod = gt_boxes->lod().back();
532
    for (int i = 0; i < n; ++i) {
533 534 535 536
      if (rpn_rois_lod[i] == rpn_rois_lod[i + 1]) {
        lod0.emplace_back(num_rois);
        continue;
      }
537 538 539 540
      Tensor rpn_rois_slice =
          rpn_rois->Slice(rpn_rois_lod[i], rpn_rois_lod[i + 1]);
      Tensor gt_classes_slice =
          gt_classes->Slice(gt_classes_lod[i], gt_classes_lod[i + 1]);
541 542
      Tensor is_crowd_slice =
          is_crowd->Slice(is_crowd_lod[i], is_crowd_lod[i + 1]);
543 544
      Tensor gt_boxes_slice =
          gt_boxes->Slice(gt_boxes_lod[i], gt_boxes_lod[i + 1]);
545
      Tensor im_info_slice = im_info->Slice(i, i + 1);
546 547 548 549 550 551 552 553 554
      Tensor max_overlap_slice;
      if (is_cascade_rcnn) {
        auto* max_overlap = context.Input<Tensor>("MaxOverlap");
        max_overlap_slice =
            max_overlap->Slice(rpn_rois_lod[i], rpn_rois_lod[i + 1]);
      } else {
        max_overlap_slice.mutable_data<T>({rpn_rois_slice.dims()[0]},
                                          context.GetPlace());
      }
555
      std::vector<Tensor> tensor_output = SampleRoisForOneImage<T>(
556 557
          dev_ctx, rpn_rois_slice, gt_classes_slice, is_crowd_slice,
          gt_boxes_slice, im_info_slice, batch_size_per_im, fg_fraction,
558
          fg_thresh, bg_thresh_hi, bg_thresh_lo, bbox_reg_weights, class_nums,
559 560
          engine, use_random, is_cascade_rcnn, is_cls_agnostic,
          max_overlap_slice);
561 562 563 564 565
      Tensor sampled_rois = tensor_output[0];
      Tensor sampled_labels_int32 = tensor_output[1];
      Tensor sampled_bbox_targets = tensor_output[2];
      Tensor sampled_bbox_inside_weights = tensor_output[3];
      Tensor sampled_bbox_outside_weights = tensor_output[4];
566
      Tensor sampled_max_overlap = tensor_output[5];
567 568 569

      AppendRois<T>(rois, kBoxDim * num_rois, &sampled_rois);
      AppendRois<int>(labels_int32, num_rois, &sampled_labels_int32);
570 571 572 573
      int64_t offset = kBoxDim * num_rois * class_nums;
      AppendRois<T>(bbox_targets, offset, &sampled_bbox_targets);
      AppendRois<T>(bbox_inside_weights, offset, &sampled_bbox_inside_weights);
      AppendRois<T>(bbox_outside_weights, offset,
574
                    &sampled_bbox_outside_weights);
575
      AppendRois<T>(max_overlap_with_gt, num_rois, &sampled_max_overlap);
576 577 578 579 580 581 582 583 584 585 586 587

      num_rois += sampled_rois.dims()[0];
      lod0.emplace_back(num_rois);
    }

    lod.emplace_back(lod0);
    rois->set_lod(lod);
    labels_int32->set_lod(lod);
    bbox_targets->set_lod(lod);
    bbox_inside_weights->set_lod(lod);
    bbox_outside_weights->set_lod(lod);
    rois->Resize({num_rois, kBoxDim});
588
    labels_int32->Resize({num_rois, 1});
589 590 591
    bbox_targets->Resize({num_rois, kBoxDim * class_nums});
    bbox_inside_weights->Resize({num_rois, kBoxDim * class_nums});
    bbox_outside_weights->Resize({num_rois, kBoxDim * class_nums});
592 593
    max_overlap_with_gt->Resize({num_rois});
    max_overlap_with_gt->set_lod(lod);
594 595 596 597 598 599
  }
};

class GenerateProposalLabelsOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
B
buxingyuan 已提交
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
    AddInput(
        "RpnRois",
        "(LoDTensor), This input is a 2D LoDTensor with shape [N, 4]. "
        "N is the number of the GenerateProposalOp's output, "
        "each element is a bounding box with [xmin, ymin, xmax, ymax] format.");
    AddInput("GtClasses",
             "(LoDTensor), This input is a 2D LoDTensor with shape [M, 1]. "
             "M is the number of groundtruth, "
             "each element is a class label of groundtruth.");
    AddInput(
        "IsCrowd",
        "(LoDTensor), This input is a 2D LoDTensor with shape [M, 1]. "
        "M is the number of groundtruth, "
        "each element is a flag indicates whether a groundtruth is crowd.");
    AddInput(
        "GtBoxes",
        "(LoDTensor), This input is a 2D LoDTensor with shape [M, 4]. "
        "M is the number of groundtruth, "
        "each element is a bounding box with [xmin, ymin, xmax, ymax] format.");
    AddInput("ImInfo",
             "(Tensor), This input is a 2D Tensor with shape [B, 3]. "
             "B is the number of input images, "
             "each element consists of im_height, im_width, im_scale.");
623 624 625 626 627 628
    AddInput("MaxOverlap",
             "(LoDTensor), This input is a 1D LoDTensor with shape [N]."
             "N is the number of Input(RpnRois), "
             "each element is the maximum overlap between "
             "the proposal RoI and ground-truth.")
        .AsDispensable();
B
buxingyuan 已提交
629 630 631 632 633 634 635

    AddOutput(
        "Rois",
        "(LoDTensor), This output is a 2D LoDTensor with shape [P, 4]. "
        "P usuall equal to  batch_size_per_im * batch_size, "
        "each element is a bounding box with [xmin, ymin, xmax, ymax] format.");
    AddOutput("LabelsInt32",
636
              "(LoDTensor), This output is a 2D LoDTensor with shape [P, 1], "
T
tianshuo78520a 已提交
637
              "each element represents a class label of a roi");
B
buxingyuan 已提交
638 639 640
    AddOutput("BboxTargets",
              "(LoDTensor), This output is a 2D LoDTensor with shape [P, 4 * "
              "class_nums], "
T
tianshuo78520a 已提交
641
              "each element represents a box label of a roi");
B
buxingyuan 已提交
642 643 644 645 646 647 648 649 650 651
    AddOutput(
        "BboxInsideWeights",
        "(LoDTensor), This output is a 2D LoDTensor with shape [P, 4 * "
        "class_nums], "
        "each element indicates whether a box should contribute to loss.");
    AddOutput(
        "BboxOutsideWeights",
        "(LoDTensor), This output is a 2D LoDTensor with shape [P, 4 * "
        "class_nums], "
        "each element indicates whether a box should contribute to loss.");
652 653 654 655 656 657
    AddOutput("MaxOverlapWithGT",
              "(LoDTensor), This output is a 1D LoDTensor with shape [P], "
              "each element indicates the maxoverlap "
              "between output RoIs and ground-truth. "
              "The output RoIs may include ground-truth "
              "and the output maxoverlap may contain 1.");
B
buxingyuan 已提交
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676

    AddAttr<int>("batch_size_per_im", "Batch size of rois per images.");
    AddAttr<float>("fg_fraction",
                   "Foreground fraction in total batch_size_per_im.");
    AddAttr<float>(
        "fg_thresh",
        "Overlap threshold which is used to chose foreground sample.");
    AddAttr<float>("bg_thresh_hi",
                   "Overlap threshold upper bound which is used to chose "
                   "background sample.");
    AddAttr<float>("bg_thresh_lo",
                   "Overlap threshold lower bound which is used to chose "
                   "background sample.");
    AddAttr<std::vector<float>>("bbox_reg_weights", "Box regression weights.");
    AddAttr<int>("class_nums", "Class number.");
    AddAttr<bool>(
        "use_random",
        "Use random sampling to choose foreground and background boxes.")
        .SetDefault(true);
677 678 679 680 681 682 683
    AddAttr<bool>("is_cascade_rcnn",
                  "cascade rcnn sampling policy changed from stage 2.")
        .SetDefault(false);
    AddAttr<bool>(
        "is_cls_agnostic",
        "the box regress will only include fg and bg locations if set true ")
        .SetDefault(false);
684 685

    AddComment(R"DOC(
B
buxingyuan 已提交
686
This operator can be, for given the GenerateProposalOp output bounding boxes and groundtruth,
B
buxingyuan 已提交
687
to sample foreground boxes and background boxes, and compute loss target.
B
buxingyuan 已提交
688 689 690

RpnRois is the output boxes of RPN and was processed by generate_proposal_op, these boxes
were combined with groundtruth boxes and sampled according to batch_size_per_im and fg_fraction,
B
buxingyuan 已提交
691
If an instance with a groundtruth overlap greater than fg_thresh, then it was considered as a foreground sample.
B
buxingyuan 已提交
692 693
If an instance with a groundtruth overlap greater than bg_thresh_lo and lower than bg_thresh_hi,
then it was considered as a background sample.
B
buxingyuan 已提交
694
After all foreground and background boxes are chosen (so called Rois),
B
buxingyuan 已提交
695
then we apply random sampling to make sure
B
buxingyuan 已提交
696
the number of foreground boxes is no more than batch_size_per_im * fg_fraction.
B
buxingyuan 已提交
697 698 699 700

For each box in Rois, we assign the classification (class label) and regression targets (box label) to it.
Finally BboxInsideWeights and BboxOutsideWeights are used to specify whether it would contribute to training loss.
    )DOC");
701 702 703 704 705 706 707
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
708 709 710 711 712
REGISTER_OPERATOR(
    generate_proposal_labels, ops::GenerateProposalLabelsOp,
    ops::GenerateProposalLabelsOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
713 714 715
REGISTER_OP_CPU_KERNEL(generate_proposal_labels,
                       ops::GenerateProposalLabelsKernel<float>,
                       ops::GenerateProposalLabelsKernel<double>);