test_outer.py 6.8 KB
Newer Older
Z
zhiboniu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import unittest

import numpy as np

import paddle
from paddle.static import Program, program_guard
W
wanghuancoder 已提交
22
from paddle.fluid.framework import _test_eager_guard, in_dygraph_mode
Z
zhiboniu 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51


class TestMultiplyApi(unittest.TestCase):
    def _run_static_graph_case(self, x_data, y_data):
        with program_guard(Program(), Program()):
            paddle.enable_static()
            x = paddle.static.data(
                name='x', shape=x_data.shape, dtype=x_data.dtype)
            y = paddle.static.data(
                name='y', shape=y_data.shape, dtype=y_data.dtype)
            res = paddle.outer(x, y)

            place = paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda(
            ) else paddle.CPUPlace()
            exe = paddle.static.Executor(place)
            outs = exe.run(paddle.static.default_main_program(),
                           feed={'x': x_data,
                                 'y': y_data},
                           fetch_list=[res])
            res = outs[0]
            return res

    def _run_dynamic_graph_case(self, x_data, y_data):
        paddle.disable_static()
        x = paddle.to_tensor(x_data)
        y = paddle.to_tensor(y_data)
        res = paddle.outer(x, y)
        return res.numpy()

W
wanghuancoder 已提交
52
    def func_test_multiply(self):
Z
zhiboniu 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
        np.random.seed(7)

        # test static computation graph: 3-d array
        x_data = np.random.rand(2, 10, 10).astype(np.float64)
        y_data = np.random.rand(2, 5, 10).astype(np.float64)
        res = self._run_static_graph_case(x_data, y_data)
        self.assertTrue(np.allclose(res, np.outer(x_data, y_data)))

        # test static computation graph: 2-d array
        x_data = np.random.rand(200, 5).astype(np.float64)
        y_data = np.random.rand(50, 5).astype(np.float64)
        res = self._run_static_graph_case(x_data, y_data)
        self.assertTrue(np.allclose(res, np.outer(x_data, y_data)))

        # test static computation graph: 1-d array
        x_data = np.random.rand(50).astype(np.float64)
        y_data = np.random.rand(50).astype(np.float64)
        res = self._run_static_graph_case(x_data, y_data)
        self.assertTrue(np.allclose(res, np.outer(x_data, y_data)))

        # test dynamic computation graph: 3-d array
        x_data = np.random.rand(5, 10, 10).astype(np.float64)
        y_data = np.random.rand(2, 10).astype(np.float64)
        res = self._run_dynamic_graph_case(x_data, y_data)
        self.assertTrue(np.allclose(res, np.outer(x_data, y_data)))

        # test dynamic computation graph: 2-d array
        x_data = np.random.rand(20, 50).astype(np.float64)
        y_data = np.random.rand(50).astype(np.float64)
        res = self._run_dynamic_graph_case(x_data, y_data)
        self.assertTrue(np.allclose(res, np.outer(x_data, y_data)))

        # test dynamic computation graph: Scalar
        x_data = np.random.rand(20, 10).astype(np.float32)
        y_data = np.random.rand(1).astype(np.float32).item()
        res = self._run_dynamic_graph_case(x_data, y_data)
        self.assertTrue(np.allclose(res, np.outer(x_data, y_data), rtol=1e4))

        # test dynamic computation graph: 2-d array Complex
        x_data = np.random.rand(20,
                                50).astype(np.float64) + 1J * np.random.rand(
                                    20, 50).astype(np.float64)
        y_data = np.random.rand(50).astype(np.float64) + 1J * np.random.rand(
            50).astype(np.float64)
        res = self._run_dynamic_graph_case(x_data, y_data)
        self.assertTrue(np.allclose(res, np.outer(x_data, y_data)))

        # test dynamic computation graph: 3-d array Complex
        x_data = np.random.rand(5, 10,
                                10).astype(np.float64) + 1J * np.random.rand(
                                    5, 10, 10).astype(np.float64)
        y_data = np.random.rand(2, 10).astype(np.float64) + 1J * np.random.rand(
            2, 10).astype(np.float64)
        res = self._run_dynamic_graph_case(x_data, y_data)
        self.assertTrue(np.allclose(res, np.outer(x_data, y_data)))

W
wanghuancoder 已提交
109 110 111 112 113
    def test_multiply(self):
        with _test_eager_guard():
            self.func_test_multiply()
        self.func_test_multiply()

Z
zhiboniu 已提交
114 115

class TestMultiplyError(unittest.TestCase):
W
wanghuancoder 已提交
116
    def func_test_errors(self):
Z
zhiboniu 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
        # test static computation graph: dtype can not be int8
        paddle.enable_static()
        with program_guard(Program(), Program()):
            x = paddle.static.data(name='x', shape=[100], dtype=np.int8)
            y = paddle.static.data(name='y', shape=[100], dtype=np.int8)
            self.assertRaises(TypeError, paddle.outer, x, y)

        np.random.seed(7)
        # test dynamic computation graph: dtype can not be int8
        paddle.disable_static()
        x_data = np.random.randn(200).astype(np.int8)
        y_data = np.random.randn(200).astype(np.int8)
        x = paddle.to_tensor(x_data)
        y = paddle.to_tensor(y_data)
        self.assertRaises(RuntimeError, paddle.outer, x, y)

        # test dynamic computation graph: dtype must be same	
        x_data = np.random.randn(200).astype(np.float32)
        y_data = np.random.randn(200).astype(np.float64)
        x = paddle.to_tensor(x_data)
        y = paddle.to_tensor(y_data)
        self.assertRaises(ValueError, paddle.outer, x, y)

        # test dynamic computation graph: dtype must be Tensor type
        x_data = np.random.randn(200).astype(np.float64)
        y_data = np.random.randn(200).astype(np.float64)
        y = paddle.to_tensor(y_data)
        self.assertRaises(ValueError, paddle.outer, x_data, y)

        # test dynamic computation graph: dtype must be Tensor type
        x_data = np.random.randn(200).astype(np.float32)
        y_data = np.random.randn(200).astype(np.float32)
        x = paddle.to_tensor(x_data)
        self.assertRaises(ValueError, paddle.outer, x, y_data)

        # test dynamic computation graph: dtype must be Tensor type
        x_data = np.random.randn(200).astype(np.float32)
        y_data = np.random.randn(200).astype(np.float32)
        self.assertRaises(ValueError, paddle.outer, x_data, y_data)

W
wanghuancoder 已提交
157 158 159 160 161
    def test_errors(self):
        with _test_eager_guard():
            self.func_test_errors()
        self.func_test_errors()

Z
zhiboniu 已提交
162 163 164

if __name__ == '__main__':
    unittest.main()