concurrent_programming.md 7.6 KB
Newer Older
Y
Yi Wang 已提交
1 2 3 4 5 6 7 8 9 10 11 12
# Design Doc: Concurrent Programming with Fluid

With PaddlePaddle Fluid, users describe a program other than a model.  The program is a [`ProgramDesc`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/framework.proto) protobuf message. TensorFlow/MxNet/Caffe2 applications generate protobuf messages too, but their protobuf messages represent the model, a graph of operators, but not the program that trains/uses the model.   

Many know that when we program TensorFlow, we can specify the device on which each operator runs.  This allows us to create a concurrent/parallel AI application.   An interesting questions is **how does a `ProgramDesc` represents a concurrent program?**  

The answer relies on the fact that a `ProgramDesc` is similar to an abstract syntax tree (AST) that describes a program.  So users just program a concurrent program that they do with any concurrent programming language, e.g., [Go](https://golang.org).

## An Analogy

The following table compares concepts in Fluid and Go

_青葱's avatar
_青葱 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25
<table>
<thead>
<tr>
<th></th>
<th>Go</th>
<th>Fluid</th>
</tr>
</thead>
<tbody>
<tr>
<td>user-defined functions </td>
<td>
<a href="https://github.com/PaddlePaddle/Paddle/tree/develop/python/paddle/fluid">layers</a></td>
_青葱's avatar
_青葱 已提交
26
<td></td>
_青葱's avatar
_青葱 已提交
27 28 29 30 31
</tr>
<tr>
<td>control-flow and built-in functions </td>
<td>
<a href="https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/operators">intrinsics/operators</a></td>
_青葱's avatar
_青葱 已提交
32
<td></td>
_青葱's avatar
_青葱 已提交
33 34 35 36 37
</tr>
<tr>
<td>goroutines, channels </td>
<td>
<a href="https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/framework/thread_pool.h">class ThreadPool</a></td>
_青葱's avatar
_青葱 已提交
38
<td></td>
_青葱's avatar
_青葱 已提交
39 40 41 42 43
</tr>
<tr>
<td>runtime </td>
<td>
<a href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/executor.h">class Executor</a></td>
_青葱's avatar
_青葱 已提交
44
<td></td>
_青葱's avatar
_青葱 已提交
45 46 47 48
</tr>
</tbody>
</table>

Y
Yi Wang 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109

## An Example Concurrent Program

To review all above concepts in an example, let us take a simple program and writes its distributed version.

Suppose that we want to parallelize a naive Fluid program (written in Go and calling Fluid's Go binding) that multiplies two tensors.

```go
import "fluid"

func paddlepaddle() {
  X = fluid.read(...)
  W = fluid.Tensor(...)
  Y = fluid.mult(X, W)
}
```

Please be aware that the Fluid's Go binding provides the default `main` function, which calls the `paddlepaddle` function, which, in this case, is defined in above program and creates the following `ProgramDesc` message.

```protobuf
message ProgramDesc {
  block[0] = Block {
    vars = [X, W, Y],
    ops = [
      read(output = X)
      assign(input = ..., output = W)
      mult(input = {X, W}, output = Y)
    ],
  }
}
```

Then, the default `main` function calls `fluid.run()`, which creates an instance of the [`class Executor`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/executor.h) and calls `Executor.Run(block[0])`, where `block[0]` is the first and only block defined in above `ProgramDesc` message.

The default `main` function is defined as follows:

```go
func main() {
  paddlepaddle()
  fluid.run()
}
```

## The Concurrent Version

By parallelizing the above program, we could support very big tensor X by splitting into small pieces {x_1, x_2, ...} and sent each piece to worker process/node for parallel multiplication.

In this case, we can write a transpiler that takes a `ProgramDesc` message that represents the above example program and outputs two `ProgramDesc` messages, one for running on the master process/node, and the other one for worker processes/nodes.

### The Master Program

The master program could look like the following:

```protobuf
message ProgramDesc {
  block[0] = Block {
    vars = [X, L, Y],
    ops = [
      read(output = X)
      kube_get_workers_addrs(output = L)
      Y = tensor_array(len(L))
_青葱's avatar
_青葱 已提交
110
      parallel_for(input = X, output = Y,
Y
Yi Wang 已提交
111 112 113
                   attrs = {L, block_id(1)}) # referring to block 1
    ]
  }
_青葱's avatar
_青葱 已提交
114

Y
Yi Wang 已提交
115
  block[1] = Block {
Y
Yi Wang 已提交
116
    parent = 0,
Y
Yi Wang 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
    vars = [x, y, index],
    ops = [
      slice(input = [X, index], output = x) # index is initialized by parallel_for
      send(input = x, attrs = L[index])
      recv(outputs = y, attrs = L[index])
      assign(input = y, output = Y[index])
    ]
  }
}
```

The equivalent Fluid program (calling the Go binding) is:

```go
func main() {  //// block 0
  X = fluid.read(...)
  L = fluid.k8s.get_worker_addrs()
  Y = fluid.tensor_array(len(L))
_青葱's avatar
_青葱 已提交
135
  fluid.parallel_for(X, L,
Y
Yi Wang 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148
                     func(index int) {  //// block 1
                       x = X[index]
                       fluid.send(L[index], x)
                       y = fluid.recv(L[index])
                       Y[index] = y
                     })
}
```

An explanation of the above program:

- `fluid.k8s` is a package that provides access to Kubernetes API.  
- `fluid.k8s.get_worker_addrs` returns the list of IP and ports of all pods of the current job except for the current one (the master pod).  
_青葱's avatar
_青葱 已提交
149
- `fluid.tensor_array` creates a [tensor array](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/lod_tensor_array.h).  `fluid.parallel_for` creates a `ParallelFor` intrinsic, which, when executed,
Y
Yi Wang 已提交
150 151 152 153 154

  1. creates `len(L)` scopes, each for the concurrent running of the sub-block (block 1 in this case), and initializes a variable named "index" in the scope to an integer value in the range `[0, len(L)-1]`, and
  2. creates `len(L)` threads by calling into the `ThreadPool` singleton, each thread  
     1. creates an Executor instance, and
     2. calls `Executor.Run(block)`, where `block` is block 1 as explained above.
Y
Yi Wang 已提交
155
1. Please be aware that block 1 is a sub-block of block 0, so ops in block 1 could refer to variables defined in block 0.
Y
Yi Wang 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193

### The Worker Program

The worker program looks like

```go
func main() {
  W = Tensor(...)
  x = fluid.listen_and_do(
        fluid.k8s.self_addr(),
        func(input Tensor) {
          output = fluid.mult(input, W)
        })
}
```

where

- `fluid.listen_and_do` creates a `ListenAndDo` intrinsic, which, when executed,
  1. listens on the current pod's IP address, as returned by `fliud.k8s.self_addr()`,
  2. once a connection is established,
     1. creates a scope of two parameters, "input" and "output",
     2. reads a [Fluid variable](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/variable.h) and saves it into "input",
     3. creates an Executor instance and calls `Executor.Run(block)`, where the block is generated by running the lambda specified as the second parameter of `fluid.listen_and_do`.

## Summarization

From the above example, we see that:

1. Fluid enables the imperative programming paradigm by:
   1. letting users describe a program, but not a model (a sequence of layers, or a graph of operators), and
   2. call the `fluid.run` function that runs the program implicitly.
1. The program is described as a `ProgramDesc` protobuf message.
2. Function `Executor.Run` takes a block, instead of a `ProgramDesc`, as its parameter.
3. `fluid.run` calls `Executor.Run` to run the first block in the `ProgramDesc` message.
4. `Executor.Run`'s implementation is extremely simple -- it doesn't plan the execution nor create threads; instead, it runs on the current thread and execute intrinsics/operators' `Run` method sequentially as they appear in the `Block.ops` array.
5. Intrinsics/operators' `Run` method might create threads.  For example, the `ListenAndDo` operator creates a thread to handle each incoming request.
6. Threads are not necessarily OS thread; instead, they could be [green threads](https://en.wikipedia.org/wiki/Green_threads) managed by ThreadPool.  Multiple green threads might run on the same OS thread.  An example green threads is Go's [goroutines](https://tour.golang.org/concurrency/1).