mish_op_plugin.cu 8.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <cstring>
#include "glog/logging.h"
#include "paddle/fluid/inference/tensorrt/plugin/mish_op_plugin.h"

namespace paddle {
namespace inference {
namespace tensorrt {
namespace plugin {

int MishPlugin::initialize() TRT_NOEXCEPT { return 0; }

bool MishPlugin::supportsFormat(
    nvinfer1::DataType type, nvinfer1::PluginFormat format) const TRT_NOEXCEPT {
  if (with_fp16_) {
    return ((type == nvinfer1::DataType::kFLOAT ||
             type == nvinfer1::DataType::kHALF) &&
            (format == nvinfer1::PluginFormat::kLINEAR));
  } else {
    return ((type == nvinfer1::DataType::kFLOAT) &&
            (format == nvinfer1::PluginFormat::kLINEAR));
  }
}

nvinfer1::Dims MishPlugin::getOutputDimensions(int index,
                                               const nvinfer1::Dims* in_dims,
                                               int nb_inputs) TRT_NOEXCEPT {
  PADDLE_ENFORCE_EQ(nb_inputs, 1, platform::errors::InvalidArgument(
                                      "We expect [number of inputs] == 1"
                                      "in TRT Mish op plugin, but got "
                                      "[number of inputs] = %d.",
                                      nb_inputs));
  PADDLE_ENFORCE_LT(index, this->getNbOutputs(),
                    platform::errors::InvalidArgument(
                        "We expect [index] < [number of outputs]"
                        "in TRT Mish op plugin, but got "
                        "[index] = %d, [number of outputs] = %d.",
                        index, this->getNbOutputs()));
  nvinfer1::Dims const& input_dims = in_dims[0];
  nvinfer1::Dims output_dims = input_dims;
  return output_dims;
}

template <typename T>
__device__ T kTanh(T x) {
  return tanh(x);
}

template <>
__device__ half kTanh<half>(half x) {
#if CUDA_ARCH_FP16_SUPPORTED(__CUDA_ARCH__)
  const float tmp = tanhf(__half2float(x));
  return __float2half(tmp);
#endif
}

template <typename T>
__device__ T kSoftplus(T x, T threshold) {
  return x > threshold ? x : log(exp(x) + static_cast<T>(1.0f));
}

template <>
__device__ half kSoftplus<half>(half x, half threshold) {
#if CUDA_ARCH_FP16_SUPPORTED(__CUDA_ARCH__)
  return x > threshold ? x : hlog(hexp(x) + static_cast<half>(1.0f));
#endif
}

template <typename T>
__global__ void mish_kernel(float threshold, int n, const T* input, T* output) {
  const int idx = blockIdx.x * blockDim.x + threadIdx.x;
  if (idx < n) {
    const T in = input[idx];
    output[idx] = in * kTanh<T>(kSoftplus<T>(in, static_cast<T>(threshold)));
  }
}

template <>
__global__ void mish_kernel<half>(float threshold, int n, const half* input,
                                  half* output) {
#if CUDA_ARCH_FP16_SUPPORTED(__CUDA_ARCH__)
  const int idx = blockIdx.x * blockDim.x + threadIdx.x;
  if (idx < n) {
    const half in = input[idx];
    output[idx] =
        in * kTanh<half>(kSoftplus<half>(in, static_cast<half>(threshold)));
  }
#endif
}

#if IS_TRT_VERSION_LT(8000)
int MishPlugin::enqueue(int batchSize, const void* const* inputs,
                        void** outputs,
#else
int MishPlugin::enqueue(int batchSize, const void* const* inputs,
                        void* const* outputs,
#endif
                        void* workspace, cudaStream_t stream) TRT_NOEXCEPT {
  const auto& input_dims = this->getInputDims(0);
  int num = batchSize;
  for (int i = 0; i < input_dims.nbDims; i++) {
    num *= input_dims.d[i];
  }

  const int block_size = 256;
  const int grid_size = (num + block_size - 1) / block_size;

  auto type = getDataType();
  if (type == nvinfer1::DataType::kFLOAT) {
    VLOG(1) << "TRT Plugin DataType selected. Mish-->fp32";
    const float* input = static_cast<const float*>(inputs[0]);
    float* output = static_cast<float*>(outputs[0]);
    mish_kernel<float><<<grid_size, block_size, 0, stream>>>(threshold_, num,
                                                             input, output);
  } else if (type == nvinfer1::DataType::kHALF) {
    VLOG(1) << "TRT Plugin DataType selected. Mish-->fp16";
    const half* input = static_cast<const half*>(inputs[0]);
    half* output = static_cast<half*>(outputs[0]);
    mish_kernel<half><<<grid_size, block_size, 0, stream>>>(threshold_, num,
                                                            input, output);
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The Mish TRT Plugin's input type should be float or half."));
  }

  return cudaGetLastError() != cudaSuccess;
}

// Dynamic Plugin below.
int MishPluginDynamic::initialize() TRT_NOEXCEPT {
  getPluginNamespace();
  return 0;
}

size_t MishPluginDynamic::getSerializationSize() const TRT_NOEXCEPT {
  return SerializedSize(threshold_) + SerializedSize(with_fp16_);
}

void MishPluginDynamic::serialize(void* buffer) const TRT_NOEXCEPT {
  SerializeValue(&buffer, threshold_);
  SerializeValue(&buffer, with_fp16_);
}

nvinfer1::DimsExprs MishPluginDynamic::getOutputDimensions(
    int output_index, const nvinfer1::DimsExprs* inputs, int nb_inputs,
    nvinfer1::IExprBuilder& expr_builder) TRT_NOEXCEPT {
  return inputs[0];
}

bool MishPluginDynamic::supportsFormatCombination(
    int pos, const nvinfer1::PluginTensorDesc* in_out, int nb_inputs,
    int nb_outputs) TRT_NOEXCEPT {
  PADDLE_ENFORCE_NOT_NULL(
      in_out, platform::errors::InvalidArgument(
                  "The input of mish plugin shoule not be nullptr."));

  PADDLE_ENFORCE_LT(
      pos, nb_inputs + nb_outputs,
      platform::errors::InvalidArgument("The pos(%d) should be less than the "
                                        "num(%d) of the input and the output.",
                                        pos, nb_inputs + nb_outputs));

  const nvinfer1::PluginTensorDesc& in = in_out[pos];
  if (pos == 0) {
    if (with_fp16_) {
      return (in.type == nvinfer1::DataType::kFLOAT ||
              in.type == nvinfer1::DataType::kHALF) &&
             (in.format == nvinfer1::TensorFormat::kLINEAR);
    } else {
      return (in.type == nvinfer1::DataType::kFLOAT) &&
             (in.format == nvinfer1::TensorFormat::kLINEAR);
    }
  }
  const nvinfer1::PluginTensorDesc& prev = in_out[pos - 1];
  // output
  return in.type == prev.type && in.format == prev.format;
}

nvinfer1::DataType MishPluginDynamic::getOutputDataType(
    int index, const nvinfer1::DataType* input_types,
    int nb_inputs) const TRT_NOEXCEPT {
  PADDLE_ENFORCE_EQ(index, 0, platform::errors::InvalidArgument(
                                  "The Mish Plugin only has one input, so the "
                                  "index value should be 0, but get %d.",
                                  index));
  return input_types[0];
}

int MishPluginDynamic::enqueue(const nvinfer1::PluginTensorDesc* input_desc,
                               const nvinfer1::PluginTensorDesc* output_desc,
                               const void* const* inputs, void* const* outputs,
                               void* workspace,
                               cudaStream_t stream) TRT_NOEXCEPT {
  auto input_dims = input_desc[0].dims;
  size_t num = ProductDim(input_dims);
  const int block_size = 256;
  const int grid_size = (num + block_size - 1) / block_size;

  auto input_type = input_desc[0].type;
  if (input_type == nvinfer1::DataType::kFLOAT) {
    VLOG(1) << "TRT Plugin DataType selected. Mish-->fp32";
    const float* input = static_cast<const float*>(inputs[0]);
    float* output = static_cast<float*>(outputs[0]);
    mish_kernel<float><<<grid_size, block_size, 0, stream>>>(threshold_, num,
                                                             input, output);
  } else if (input_type == nvinfer1::DataType::kHALF) {
    VLOG(1) << "TRT Plugin DataType selected. Mish-->fp16";
    const half* input = static_cast<const half*>(inputs[0]);
    half* output = static_cast<half*>(outputs[0]);
    mish_kernel<half><<<grid_size, block_size, 0, stream>>>(threshold_, num,
                                                            input, output);
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The Mish TRT Plugin's input type should be float or half."));
  }
  return cudaGetLastError() != cudaSuccess;
}

}  // namespace plugin
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle