test_egr_python_api.py 43.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.fluid.core as core
import paddle
import numpy as np
18
from paddle.fluid.framework import _test_eager_guard, EagerParamBase, _in_eager_mode
J
Jiabin Yang 已提交
19
from paddle.fluid.data_feeder import convert_dtype
20
import unittest
21
import copy
22
import paddle.compat as cpt
23 24 25 26


class EagerScaleTestCase(unittest.TestCase):
    def test_scale_base(self):
J
Jiabin Yang 已提交
27
        with _test_eager_guard():
28 29 30 31 32 33 34 35 36 37 38 39
            paddle.set_device("cpu")
            arr = np.ones([4, 16, 16, 32]).astype('float32')
            tensor = paddle.to_tensor(arr, 'float32', core.CPUPlace())
            print(tensor)
            tensor = core.eager.scale(tensor, 2.0, 0.9, True, False)
            for i in range(0, 100):
                tensor = core.eager.scale(tensor, 2.0, 0.9, True, False)
            print(tensor)
            self.assertEqual(tensor.shape, [4, 16, 16, 32])
            self.assertEqual(tensor.stop_gradient, True)

    def test_retain_grad_and_run_backward(self):
J
Jiabin Yang 已提交
40
        with _test_eager_guard():
41 42 43 44 45 46 47 48 49
            paddle.set_device("cpu")

            input_data = np.ones([4, 16, 16, 32]).astype('float32')
            data_eager = paddle.to_tensor(input_data, 'float32',
                                          core.CPUPlace(), False)

            grad_data = np.ones([4, 16, 16, 32]).astype('float32')
            grad_eager = paddle.to_tensor(grad_data, 'float32', core.CPUPlace())

50
            data_eager.retain_grads()
51 52

            out_eager = core.eager.scale(data_eager, 1.0, 0.9, True, True)
53
            self.assertIsNone(data_eager.grad)
54
            out_eager.backward(grad_eager, False)
55
            self.assertIsNotNone(data_eager.grad)
56 57
            self.assertTrue(np.array_equal(data_eager.grad.numpy(), input_data))

58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
    def test_retain_grad_and_run_backward_raises(self):
        with _test_eager_guard():
            paddle.set_device("cpu")

            input_data = np.ones([4, 16, 16, 32]).astype('float32')
            data_eager = paddle.to_tensor(input_data, 'float32',
                                          core.CPUPlace(), False)

            grad_data = np.ones([4, 16, 16, 32]).astype('float32')
            grad_data2 = np.ones([4, 16]).astype('float32')
            grad_eager = paddle.to_tensor(grad_data, 'float32', core.CPUPlace())
            grad_eager2 = paddle.to_tensor(grad_data2, 'float32',
                                           core.CPUPlace())

            data_eager.retain_grads()

            out_eager = core.eager.scale(data_eager, 1.0, 0.9, True, True)
75
            self.assertIsNone(data_eager.grad)
76 77 78 79 80 81 82 83 84 85
            with self.assertRaisesRegexp(
                    AssertionError,
                    "The type of grad_tensor must be paddle.Tensor"):
                out_eager.backward(grad_data, False)

            with self.assertRaisesRegexp(
                    AssertionError,
                    "Tensor shape not match, Tensor of grad_tensor /*"):
                out_eager.backward(grad_eager2, False)

86 87

class EagerDtypeTestCase(unittest.TestCase):
J
Jiabin Yang 已提交
88 89
    def check_to_tesnsor_and_numpy(self, dtype, proto_dtype):
        with _test_eager_guard():
90 91
            arr = np.random.random([4, 16, 16, 32]).astype(dtype)
            tensor = paddle.to_tensor(arr, dtype)
J
Jiabin Yang 已提交
92
            self.assertEqual(tensor.dtype, proto_dtype)
93 94 95
            self.assertTrue(np.array_equal(arr, tensor.numpy()))

    def test_dtype_base(self):
J
Jiabin Yang 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109
        print("Test_dtype")
        self.check_to_tesnsor_and_numpy('bool', core.VarDesc.VarType.BOOL)
        self.check_to_tesnsor_and_numpy('int8', core.VarDesc.VarType.INT8)
        self.check_to_tesnsor_and_numpy('uint8', core.VarDesc.VarType.UINT8)
        self.check_to_tesnsor_and_numpy('int16', core.VarDesc.VarType.INT16)
        self.check_to_tesnsor_and_numpy('int32', core.VarDesc.VarType.INT32)
        self.check_to_tesnsor_and_numpy('int64', core.VarDesc.VarType.INT64)
        self.check_to_tesnsor_and_numpy('float16', core.VarDesc.VarType.FP16)
        self.check_to_tesnsor_and_numpy('float32', core.VarDesc.VarType.FP32)
        self.check_to_tesnsor_and_numpy('float64', core.VarDesc.VarType.FP64)
        self.check_to_tesnsor_and_numpy('complex64',
                                        core.VarDesc.VarType.COMPLEX64)
        self.check_to_tesnsor_and_numpy('complex128',
                                        core.VarDesc.VarType.COMPLEX128)
110 111


112
class EagerVariablePropertiesAndMethodsTestCase(unittest.TestCase):
113
    def constructor(self, place):
114
        egr_tensor = core.eager.Tensor()
115 116 117 118 119 120
        self.assertEqual(egr_tensor.persistable, False)
        self.assertTrue("generated" in egr_tensor.name)
        self.assertEqual(egr_tensor.shape, [])
        self.assertEqual(egr_tensor.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor.stop_gradient, True)

121 122 123
        egr_tensor0 = core.eager.Tensor(core.VarDesc.VarType.FP32,
                                        [4, 16, 16, 32], "test_eager_tensor",
                                        core.VarDesc.VarType.LOD_TENSOR, True)
124 125 126 127 128 129
        self.assertEqual(egr_tensor0.persistable, True)
        self.assertEqual(egr_tensor0.name, "test_eager_tensor")
        self.assertEqual(egr_tensor0.shape, [4, 16, 16, 32])
        self.assertEqual(egr_tensor0.dtype, core.VarDesc.VarType.FP32)

        arr0 = np.random.rand(4, 16, 16, 32).astype('float32')
130 131
        egr_tensor1 = core.eager.Tensor(arr0, place, True, False,
                                        "numpy_tensor1", False)
132 133 134 135 136 137 138 139 140
        self.assertEqual(egr_tensor1.persistable, True)
        self.assertEqual(egr_tensor1.name, "numpy_tensor1")
        self.assertEqual(egr_tensor1.shape, [4, 16, 16, 32])
        self.assertEqual(egr_tensor1.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor1.stop_gradient, False)
        self.assertTrue(egr_tensor1.place._equals(place))
        self.assertTrue(np.array_equal(egr_tensor1.numpy(), arr0))

        arr1 = np.random.randint(100, size=(4, 16, 16, 32), dtype=np.int64)
141 142
        egr_tensor2 = core.eager.Tensor(arr1, place, False, True,
                                        "numpy_tensor2", True)
143 144 145 146 147 148 149 150 151
        self.assertEqual(egr_tensor2.persistable, False)
        self.assertEqual(egr_tensor2.name, "numpy_tensor2")
        self.assertEqual(egr_tensor2.shape, [4, 16, 16, 32])
        self.assertEqual(egr_tensor2.dtype, core.VarDesc.VarType.INT64)
        self.assertEqual(egr_tensor2.stop_gradient, True)
        self.assertTrue(egr_tensor2.place._equals(place))
        self.assertTrue(np.array_equal(egr_tensor2.numpy(), arr1))

        arr2 = np.random.rand(4, 16, 16, 32, 64).astype('float32')
152
        egr_tensor3 = core.eager.Tensor(arr2)
153 154 155 156 157 158 159 160 161 162 163
        self.assertEqual(egr_tensor3.persistable, False)
        self.assertTrue("generated_tensor" in egr_tensor3.name)
        self.assertEqual(egr_tensor3.shape, [4, 16, 16, 32, 64])
        self.assertEqual(egr_tensor3.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor3.stop_gradient, True)
        self.assertTrue(
            egr_tensor3.place._equals(
                paddle.fluid.framework._current_expected_place()))
        self.assertTrue(np.array_equal(egr_tensor3.numpy(), arr2))

        egr_tensor3.stop_gradient = False
164
        egr_tensor4 = core.eager.Tensor(egr_tensor3)
165 166 167 168 169 170 171 172 173 174 175 176
        self.assertEqual(egr_tensor4.persistable, False)
        self.assertTrue("generated_tensor" in egr_tensor4.name)
        self.assertEqual(egr_tensor4.shape, egr_tensor3.shape)
        self.assertEqual(egr_tensor4.dtype, egr_tensor3.dtype)
        self.assertEqual(egr_tensor4.stop_gradient, True)
        self.assertTrue(
            egr_tensor4.place._equals(
                paddle.fluid.framework._current_expected_place()))
        self.assertTrue(
            np.array_equal(egr_tensor4.numpy(), egr_tensor3.numpy()))

        arr4 = np.random.rand(4, 16, 16, 32).astype('float32')
177
        egr_tensor5 = core.eager.Tensor(arr4, place)
178 179 180 181 182 183 184 185
        self.assertEqual(egr_tensor5.persistable, False)
        self.assertTrue("generated_tensor" in egr_tensor5.name)
        self.assertEqual(egr_tensor5.shape, [4, 16, 16, 32])
        self.assertEqual(egr_tensor5.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor5.stop_gradient, True)
        self.assertTrue(egr_tensor5.place._equals(place))
        self.assertTrue(np.array_equal(egr_tensor5.numpy(), arr4))

186
        egr_tensor6 = core.eager.Tensor(egr_tensor5, core.CPUPlace())
187 188 189 190 191 192 193 194 195
        self.assertEqual(egr_tensor6.persistable, False)
        self.assertTrue("generated_tensor" in egr_tensor6.name)
        self.assertEqual(egr_tensor6.shape, [4, 16, 16, 32])
        self.assertEqual(egr_tensor6.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor6.stop_gradient, True)
        self.assertEqual(egr_tensor6.place.is_cpu_place(), True)
        self.assertTrue(
            np.array_equal(egr_tensor6.numpy(), egr_tensor5.numpy()))

196
        egr_tensor7 = core.eager.Tensor(arr4, place, True)
197 198 199 200 201 202 203 204
        self.assertEqual(egr_tensor7.persistable, True)
        self.assertTrue("generated_tensor" in egr_tensor7.name)
        self.assertEqual(egr_tensor7.shape, [4, 16, 16, 32])
        self.assertEqual(egr_tensor7.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor7.stop_gradient, True)
        self.assertTrue(egr_tensor7.place._equals(place))
        self.assertTrue(np.array_equal(egr_tensor7.numpy(), arr4))

205
        egr_tensor8 = core.eager.Tensor(egr_tensor6, place, "egr_tensor8")
206 207 208 209 210 211 212 213 214
        self.assertEqual(egr_tensor8.persistable, False)
        self.assertEqual(egr_tensor8.name, "egr_tensor8")
        self.assertEqual(egr_tensor8.shape, [4, 16, 16, 32])
        self.assertEqual(egr_tensor8.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor8.stop_gradient, True)
        self.assertTrue(egr_tensor8.place._equals(place))
        self.assertTrue(
            np.array_equal(egr_tensor8.numpy(), egr_tensor5.numpy()))

215
        egr_tensor9 = core.eager.Tensor(arr4, place, True, True)
216 217 218 219 220 221 222 223
        self.assertEqual(egr_tensor9.persistable, True)
        self.assertTrue("generated_tensor" in egr_tensor9.name)
        self.assertEqual(egr_tensor9.shape, [4, 16, 16, 32])
        self.assertEqual(egr_tensor9.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor9.stop_gradient, True)
        self.assertTrue(egr_tensor9.place._equals(place))
        self.assertTrue(np.array_equal(egr_tensor9.numpy(), arr4))

224 225 226
        x = np.random.rand(3, 3).astype('float32')
        t = paddle.fluid.Tensor()
        t.set(x, paddle.fluid.CPUPlace())
227
        egr_tensor10 = core.eager.Tensor(t, place)
228 229 230 231 232 233 234 235
        self.assertEqual(egr_tensor10.persistable, False)
        self.assertTrue("generated_tensor" in egr_tensor10.name)
        self.assertEqual(egr_tensor10.shape, [3, 3])
        self.assertEqual(egr_tensor10.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor10.stop_gradient, True)
        self.assertTrue(egr_tensor10.place._equals(place))
        self.assertTrue(np.array_equal(egr_tensor10.numpy(), x))

236
        egr_tensor11 = core.eager.Tensor(t, place, "framework_constructed")
237 238 239 240 241 242 243 244
        self.assertEqual(egr_tensor11.persistable, False)
        self.assertTrue("framework_constructed" in egr_tensor11.name)
        self.assertEqual(egr_tensor11.shape, [3, 3])
        self.assertEqual(egr_tensor11.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor11.stop_gradient, True)
        self.assertTrue(egr_tensor11.place._equals(place))
        self.assertTrue(np.array_equal(egr_tensor11.numpy(), x))

245
        egr_tensor12 = core.eager.Tensor(t)
246 247 248 249 250 251 252 253
        self.assertEqual(egr_tensor12.persistable, False)
        self.assertTrue("generated_tensor" in egr_tensor12.name)
        self.assertEqual(egr_tensor12.shape, [3, 3])
        self.assertEqual(egr_tensor12.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor12.stop_gradient, True)
        self.assertTrue(egr_tensor12.place._equals(paddle.fluid.CPUPlace()))
        self.assertTrue(np.array_equal(egr_tensor12.numpy(), x))

254 255 256
        egr_tensor13 = paddle.randn([2, 2])
        self.assertTrue("eager_tmp" in egr_tensor13.name)

257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
        with self.assertRaisesRegexp(
                ValueError, "The shape of Parameter should not be None"):
            eager_param = EagerParamBase(shape=None, dtype="float32")

        with self.assertRaisesRegexp(
                ValueError, "The dtype of Parameter should not be None"):
            eager_param = EagerParamBase(shape=[1, 1], dtype=None)

        with self.assertRaisesRegexp(
                ValueError,
                "The dimensions of shape for Parameter must be greater than 0"):
            eager_param = EagerParamBase(shape=[], dtype="float32")

        with self.assertRaisesRegexp(
                ValueError,
                "Each dimension of shape for Parameter must be greater than 0, but received /*"
        ):
            eager_param = EagerParamBase(shape=[-1], dtype="float32")

        eager_param = EagerParamBase(shape=[1, 1], dtype="float32")
        self.assertTrue(eager_param.trainable)
        eager_param.trainable = False
        self.assertFalse(eager_param.trainable)
        with self.assertRaisesRegexp(
                ValueError,
                "The type of trainable MUST be bool, but the type is /*"):
            eager_param.trainable = "False"

285 286 287 288 289 290 291 292 293 294
    def test_constructor(self):
        print("Test_constructor")
        paddle.set_device("cpu")
        place_list = [core.CPUPlace()]
        if core.is_compiled_with_cuda():
            place_list.append(core.CUDAPlace(0))
        with _test_eager_guard():
            for p in place_list:
                self.constructor(p)

295
    def constructor_with_kwargs(self, place):
296
        # init Tensor by Python array
297 298
        arr = np.random.rand(4, 16, 16, 32).astype('float32')

299
        egr_tensor0 = core.eager.Tensor(value=arr)
300 301 302 303 304 305 306 307 308
        self.assertEqual(egr_tensor0.persistable, False)
        self.assertTrue("generated" in egr_tensor0.name)
        self.assertEqual(egr_tensor0.shape, [4, 16, 16, 32])
        self.assertTrue(
            egr_tensor0.place._equals(
                paddle.fluid.framework._current_expected_place()))
        self.assertEqual(egr_tensor0.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor0.stop_gradient, True)

309
        egr_tensor1 = core.eager.Tensor(value=arr, place=place)
310 311 312 313 314 315 316
        self.assertEqual(egr_tensor1.persistable, False)
        self.assertTrue("generated" in egr_tensor1.name)
        self.assertEqual(egr_tensor1.shape, [4, 16, 16, 32])
        self.assertTrue(egr_tensor1.place._equals(place))
        self.assertEqual(egr_tensor1.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor1.stop_gradient, True)

317
        egr_tensor2 = core.eager.Tensor(arr, place=place)
318 319 320 321 322 323 324
        self.assertEqual(egr_tensor2.persistable, False)
        self.assertTrue("generated" in egr_tensor2.name)
        self.assertEqual(egr_tensor2.shape, [4, 16, 16, 32])
        self.assertTrue(egr_tensor2.place._equals(place))
        self.assertEqual(egr_tensor2.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor2.stop_gradient, True)

325
        egr_tensor3 = core.eager.Tensor(
326 327 328 329 330 331 332 333
            arr, place=place, name="new_eager_tensor")
        self.assertEqual(egr_tensor3.persistable, False)
        self.assertTrue("new_eager_tensor" in egr_tensor3.name)
        self.assertEqual(egr_tensor3.shape, [4, 16, 16, 32])
        self.assertTrue(egr_tensor3.place._equals(place))
        self.assertEqual(egr_tensor3.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor3.stop_gradient, True)

334
        egr_tensor4 = core.eager.Tensor(
335 336 337 338 339 340 341 342
            arr, place=place, persistable=True, name="new_eager_tensor")
        self.assertEqual(egr_tensor4.persistable, True)
        self.assertTrue("new_eager_tensor" in egr_tensor4.name)
        self.assertEqual(egr_tensor4.shape, [4, 16, 16, 32])
        self.assertTrue(egr_tensor4.place._equals(place))
        self.assertEqual(egr_tensor4.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor4.stop_gradient, True)

343
        egr_tensor5 = core.eager.Tensor(
344 345 346 347 348 349 350 351 352 353 354 355
            arr,
            core.CPUPlace(),
            persistable=True,
            name="new_eager_tensor",
            zero_copy=True)
        self.assertEqual(egr_tensor5.persistable, True)
        self.assertTrue("new_eager_tensor" in egr_tensor5.name)
        self.assertEqual(egr_tensor5.shape, [4, 16, 16, 32])
        self.assertTrue(egr_tensor5.place.is_cpu_place())
        self.assertEqual(egr_tensor5.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor5.stop_gradient, True)

356
        egr_tensor6 = core.eager.Tensor(
357 358 359 360 361 362 363 364 365 366 367 368
            arr,
            place=core.CPUPlace(),
            persistable=True,
            name="new_eager_tensor",
            zero_copy=True)
        self.assertEqual(egr_tensor6.persistable, True)
        self.assertTrue("new_eager_tensor" in egr_tensor6.name)
        self.assertEqual(egr_tensor6.shape, [4, 16, 16, 32])
        self.assertTrue(egr_tensor6.place.is_cpu_place())
        self.assertEqual(egr_tensor6.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor6.stop_gradient, True)

369
        egr_tensor7 = core.eager.Tensor(
370 371 372 373 374 375 376 377 378 379 380 381
            arr,
            place=place,
            persistable=True,
            name="new_eager_tensor",
            zero_copy=True)
        self.assertEqual(egr_tensor7.persistable, True)
        self.assertTrue("new_eager_tensor" in egr_tensor7.name)
        self.assertEqual(egr_tensor7.shape, [4, 16, 16, 32])
        self.assertTrue(egr_tensor7.place._equals(place))
        self.assertEqual(egr_tensor7.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor7.stop_gradient, True)

382
        egr_tensor8 = core.eager.Tensor(
383 384 385 386 387 388 389 390 391 392 393 394 395
            arr,
            place=place,
            persistable=True,
            name="new_eager_tensor",
            zero_copy=True,
            stop_gradient=False)
        self.assertEqual(egr_tensor8.persistable, True)
        self.assertTrue("new_eager_tensor" in egr_tensor8.name)
        self.assertEqual(egr_tensor8.shape, [4, 16, 16, 32])
        self.assertTrue(egr_tensor8.place._equals(place))
        self.assertEqual(egr_tensor8.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor8.stop_gradient, False)

396
        egr_tensor9 = core.eager.Tensor(
397 398 399 400 401 402 403 404
            arr, place, True, True, "new_eager_tensor", stop_gradient=False)
        self.assertEqual(egr_tensor9.persistable, True)
        self.assertTrue("new_eager_tensor" in egr_tensor9.name)
        self.assertEqual(egr_tensor9.shape, [4, 16, 16, 32])
        self.assertTrue(egr_tensor9.place._equals(place))
        self.assertEqual(egr_tensor9.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor9.stop_gradient, False)

405
        egr_tensor10 = core.eager.Tensor(
406 407 408 409 410 411 412 413 414 415 416 417 418
            arr,
            place,
            True,
            True,
            name="new_eager_tensor",
            stop_gradient=False)
        self.assertEqual(egr_tensor10.persistable, True)
        self.assertTrue("new_eager_tensor" in egr_tensor10.name)
        self.assertEqual(egr_tensor10.shape, [4, 16, 16, 32])
        self.assertTrue(egr_tensor10.place._equals(place))
        self.assertEqual(egr_tensor10.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor10.stop_gradient, False)

419
        egr_tensor11 = core.eager.Tensor(
420 421 422 423 424 425 426 427 428 429 430 431 432
            arr,
            place,
            True,
            zero_copy=True,
            name="new_eager_tensor",
            stop_gradient=False)
        self.assertEqual(egr_tensor11.persistable, True)
        self.assertTrue("new_eager_tensor" in egr_tensor11.name)
        self.assertEqual(egr_tensor11.shape, [4, 16, 16, 32])
        self.assertTrue(egr_tensor11.place._equals(place))
        self.assertEqual(egr_tensor11.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor11.stop_gradient, False)

433
        egr_tensor12 = core.eager.Tensor(
434 435 436 437 438 439 440 441 442 443 444 445 446
            arr,
            place,
            persistable=True,
            zero_copy=True,
            name="new_eager_tensor",
            stop_gradient=False)
        self.assertEqual(egr_tensor12.persistable, True)
        self.assertTrue("new_eager_tensor" in egr_tensor12.name)
        self.assertEqual(egr_tensor12.shape, [4, 16, 16, 32])
        self.assertTrue(egr_tensor12.place._equals(place))
        self.assertEqual(egr_tensor12.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor12.stop_gradient, False)

447
        egr_tensor13 = core.eager.Tensor(
448 449 450 451 452 453 454 455 456 457 458 459 460 461
            value=arr,
            place=place,
            persistable=True,
            zero_copy=True,
            name="new_eager_tensor",
            stop_gradient=False)
        self.assertEqual(egr_tensor13.persistable, True)
        self.assertTrue("new_eager_tensor" in egr_tensor13.name)
        self.assertEqual(egr_tensor13.shape, [4, 16, 16, 32])
        self.assertTrue(egr_tensor13.place._equals(place))
        self.assertEqual(egr_tensor13.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor13.stop_gradient, False)

        # special case
462
        egr_tensor14 = core.eager.Tensor(
463 464 465 466 467 468 469 470 471 472
            dtype=core.VarDesc.VarType.FP32,
            dims=[4, 16, 16, 32],
            name="special_eager_tensor",
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=True)
        self.assertEqual(egr_tensor14.persistable, True)
        self.assertEqual(egr_tensor14.name, "special_eager_tensor")
        self.assertEqual(egr_tensor14.shape, [4, 16, 16, 32])
        self.assertEqual(egr_tensor14.dtype, core.VarDesc.VarType.FP32)

473 474
        # init Tensor by Tensor
        egr_tensor15 = core.eager.Tensor(value=egr_tensor4)
475 476 477 478 479 480 481 482 483 484 485
        self.assertEqual(egr_tensor15.persistable, True)
        self.assertTrue("generated" in egr_tensor15.name)
        self.assertEqual(egr_tensor15.shape, egr_tensor4.shape)
        self.assertEqual(egr_tensor15.dtype, egr_tensor4.dtype)
        self.assertEqual(egr_tensor15.stop_gradient, True)
        self.assertTrue(
            egr_tensor15.place._equals(
                paddle.fluid.framework._current_expected_place()))
        self.assertTrue(
            np.array_equal(egr_tensor15.numpy(), egr_tensor4.numpy()))

486
        egr_tensor16 = core.eager.Tensor(
487 488 489 490 491 492 493 494 495 496 497 498
            value=egr_tensor4, name="new_eager_tensor")
        self.assertEqual(egr_tensor16.persistable, True)
        self.assertTrue("new_eager_tensor" in egr_tensor16.name)
        self.assertEqual(egr_tensor16.shape, egr_tensor4.shape)
        self.assertEqual(egr_tensor16.dtype, egr_tensor4.dtype)
        self.assertEqual(egr_tensor16.stop_gradient, True)
        self.assertTrue(
            egr_tensor16.place._equals(
                paddle.fluid.framework._current_expected_place()))
        self.assertTrue(
            np.array_equal(egr_tensor16.numpy(), egr_tensor4.numpy()))

499
        egr_tensor17 = core.eager.Tensor(
500 501 502 503 504 505 506 507 508 509 510 511
            value=egr_tensor4,
            place=place,
            name="new_eager_tensor", )
        self.assertEqual(egr_tensor17.persistable, True)
        self.assertTrue("new_eager_tensor" in egr_tensor17.name)
        self.assertEqual(egr_tensor17.shape, egr_tensor4.shape)
        self.assertEqual(egr_tensor17.dtype, egr_tensor4.dtype)
        self.assertEqual(egr_tensor17.stop_gradient, True)
        self.assertTrue(egr_tensor17.place._equals(place))
        self.assertTrue(
            np.array_equal(egr_tensor17.numpy(), egr_tensor4.numpy()))

512
        egr_tensor18 = core.eager.Tensor(
513 514 515 516 517 518 519 520 521 522 523 524
            egr_tensor4,
            place=place,
            name="new_eager_tensor", )
        self.assertEqual(egr_tensor18.persistable, True)
        self.assertTrue("new_eager_tensor" in egr_tensor18.name)
        self.assertEqual(egr_tensor18.shape, egr_tensor4.shape)
        self.assertEqual(egr_tensor18.dtype, egr_tensor4.dtype)
        self.assertEqual(egr_tensor18.stop_gradient, True)
        self.assertTrue(egr_tensor18.place._equals(place))
        self.assertTrue(
            np.array_equal(egr_tensor18.numpy(), egr_tensor4.numpy()))

525
        egr_tensor19 = core.eager.Tensor(
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
            egr_tensor4,
            place,
            name="new_eager_tensor", )
        self.assertEqual(egr_tensor19.persistable, True)
        self.assertTrue("new_eager_tensor" in egr_tensor19.name)
        self.assertEqual(egr_tensor19.shape, egr_tensor4.shape)
        self.assertEqual(egr_tensor19.dtype, egr_tensor4.dtype)
        self.assertEqual(egr_tensor19.stop_gradient, True)
        self.assertTrue(egr_tensor19.place._equals(place))
        self.assertTrue(
            np.array_equal(egr_tensor19.numpy(), egr_tensor4.numpy()))

        # init eager tensor by framework tensor
        x = np.random.rand(3, 3).astype('float32')
        t = paddle.fluid.Tensor()
        t.set(x, paddle.fluid.CPUPlace())
542
        egr_tensor20 = core.eager.Tensor(value=t)
543 544 545 546 547 548 549 550 551 552
        self.assertEqual(egr_tensor20.persistable, False)
        self.assertTrue("generated_tensor" in egr_tensor20.name)
        self.assertEqual(egr_tensor20.shape, [3, 3])
        self.assertEqual(egr_tensor20.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor20.stop_gradient, True)
        self.assertTrue(
            egr_tensor20.place._equals(
                paddle.fluid.framework._current_expected_place()))
        self.assertTrue(np.array_equal(egr_tensor20.numpy(), x))

553
        egr_tensor21 = core.eager.Tensor(value=t, place=place)
554 555 556 557 558 559 560 561
        self.assertEqual(egr_tensor21.persistable, False)
        self.assertTrue("generated_tensor" in egr_tensor21.name)
        self.assertEqual(egr_tensor21.shape, [3, 3])
        self.assertEqual(egr_tensor21.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor21.stop_gradient, True)
        self.assertTrue(egr_tensor21.place._equals(place))
        self.assertTrue(np.array_equal(egr_tensor21.numpy(), x))

562
        egr_tensor22 = core.eager.Tensor(t, place=place)
563 564 565 566 567 568 569 570
        self.assertEqual(egr_tensor22.persistable, False)
        self.assertTrue("generated_tensor" in egr_tensor22.name)
        self.assertEqual(egr_tensor22.shape, [3, 3])
        self.assertEqual(egr_tensor22.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor22.stop_gradient, True)
        self.assertTrue(egr_tensor22.place._equals(place))
        self.assertTrue(np.array_equal(egr_tensor22.numpy(), x))

571
        egr_tensor23 = core.eager.Tensor(t, place, name="from_framework_tensor")
572 573 574 575 576 577 578 579
        self.assertEqual(egr_tensor23.persistable, False)
        self.assertTrue("from_framework_tensor" in egr_tensor23.name)
        self.assertEqual(egr_tensor23.shape, [3, 3])
        self.assertEqual(egr_tensor23.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor23.stop_gradient, True)
        self.assertTrue(egr_tensor23.place._equals(place))
        self.assertTrue(np.array_equal(egr_tensor23.numpy(), x))

580
        egr_tensor24 = core.eager.Tensor(
581 582 583 584 585 586 587 588 589 590 591
            value=t, place=place, name="from_framework_tensor")
        self.assertEqual(egr_tensor24.persistable, False)
        self.assertTrue("from_framework_tensor" in egr_tensor24.name)
        self.assertEqual(egr_tensor24.shape, [3, 3])
        self.assertEqual(egr_tensor24.dtype, core.VarDesc.VarType.FP32)
        self.assertEqual(egr_tensor24.stop_gradient, True)
        self.assertTrue(egr_tensor24.place._equals(place))
        self.assertTrue(np.array_equal(egr_tensor24.numpy(), x))

        # Bad usage
        # SyntaxError: positional argument follows keyword argument
592
        # egr_tensor25 = core.eager.Tensor(value=t, place) 
593 594 595 596 597 598 599 600 601 602 603

    def test_constructor_with_kwargs(self):
        print("Test_constructor_with_kwargs")
        paddle.set_device("cpu")
        place_list = [core.CPUPlace()]
        if core.is_compiled_with_cuda():
            place_list.append(core.CUDAPlace(0))
        with _test_eager_guard():
            for p in place_list:
                self.constructor_with_kwargs(p)

604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
    def test_copy_and_copy_to(self):
        print("Test_copy_and_copy_to")
        with _test_eager_guard():
            paddle.set_device("cpu")
            arr = np.ones([4, 16, 16, 32]).astype('float32')
            arr1 = np.zeros([4, 16]).astype('float32')
            arr2 = np.ones([4, 16, 16, 32]).astype('float32') + np.ones(
                [4, 16, 16, 32]).astype('float32')
            tensor = paddle.to_tensor(arr, core.VarDesc.VarType.FP32,
                                      core.CPUPlace())
            self.assertEqual(tensor.stop_gradient, True)
            tensor.stop_gradient = False
            print("Set persistable")
            tensor.persistable = False
            tensor1 = paddle.to_tensor(arr1, core.VarDesc.VarType.FP32,
                                       core.CPUPlace())
            tensor1.persistable = True
            self.assertEqual(tensor1.stop_gradient, True)
            self.assertTrue(np.array_equal(tensor.numpy(), arr))
            print("Test copy_")
            tensor.copy_(tensor1, True)
625
            self.assertEqual(tensor.persistable, False)
626 627 628 629 630 631 632 633 634 635 636 637
            self.assertEqual(tensor.shape, [4, 16])
            self.assertEqual(tensor.dtype, core.VarDesc.VarType.FP32)
            self.assertTrue(np.array_equal(tensor.numpy(), arr1))

            print("Test _copy_to")
            tensor2 = paddle.to_tensor(arr2, core.VarDesc.VarType.FP32,
                                       core.CPUPlace())
            self.assertTrue(np.array_equal(tensor2.numpy(), arr2))
            self.assertTrue(tensor2.place.is_cpu_place())
            tensor2.persistable = True
            tensor2.stop_gradient = False
            if core.is_compiled_with_cuda():
638
                tensor3 = tensor2._copy_to(core.CUDAPlace(0), True)
639
                self.assertTrue(np.array_equal(tensor3.numpy(), arr2))
J
Jiabin Yang 已提交
640 641
                self.assertEqual(tensor3.persistable, True)
                self.assertEqual(tensor3.stop_gradient, True)
642
                self.assertTrue(tensor3.place.is_gpu_place())
J
Jiabin Yang 已提交
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657

                tensor4 = tensor2.cuda(0, True)
                self.assertTrue(np.array_equal(tensor4.numpy(), arr2))
                self.assertEqual(tensor4.persistable, True)
                self.assertEqual(tensor4.stop_gradient, False)
                self.assertTrue(tensor4.place.is_gpu_place())

                tensor5 = tensor4.cpu()
                self.assertTrue(np.array_equal(tensor5.numpy(), arr2))
                self.assertEqual(tensor5.persistable, True)
                self.assertEqual(tensor5.stop_gradient, False)
                self.assertTrue(tensor5.place.is_cpu_place())

                tensor10 = paddle.to_tensor([1, 2, 3], place='gpu_pinned')
                tensor11 = tensor10._copy_to(core.CUDAPlace(0), True)
658
                self.assertTrue(
J
Jiabin Yang 已提交
659
                    np.array_equal(tensor10.numpy(), tensor11.numpy()))
660
            else:
661
                tensor3 = tensor2._copy_to(core.CPUPlace(), True)
662
                self.assertTrue(np.array_equal(tensor3.numpy(), arr2))
J
Jiabin Yang 已提交
663 664
                self.assertEqual(tensor3.persistable, True)
                self.assertEqual(tensor3.stop_gradient, True)
665 666
                self.assertTrue(tensor3.place.is_cpu_place())

J
Jiabin Yang 已提交
667 668 669 670 671 672
                tensor4 = tensor2.cpu()
                self.assertTrue(np.array_equal(tensor4.numpy(), arr2))
                self.assertEqual(tensor4.persistable, True)
                self.assertEqual(tensor4.stop_gradient, False)
                self.assertTrue(tensor4.place.is_cpu_place())

673 674
    def test_share_buffer_to(self):
        with _test_eager_guard():
675 676 677 678 679 680 681 682
            arr = np.ones([4, 16, 16, 32]).astype('float32')
            arr1 = np.zeros([4, 16]).astype('float32')
            arr2 = np.ones([4, 16, 16, 32]).astype('float32') + np.ones(
                [4, 16, 16, 32]).astype('float32')
            tensor = None
            tensor2 = None
            tensor = paddle.to_tensor(arr, core.VarDesc.VarType.FP32,
                                      core.CPUPlace())
683
            tensor3 = core.eager.Tensor()
684 685 686 687 688 689
            if core.is_compiled_with_cuda():
                tensor2 = paddle.to_tensor(arr2, core.VarDesc.VarType.FP32,
                                           core.CUDAPlace(0))
            else:
                tensor2 = paddle.to_tensor(arr2, core.VarDesc.VarType.FP32,
                                           core.CPUPlace())
690
            self.assertTrue(np.array_equal(tensor.numpy(), arr))
691 692 693 694 695 696 697 698 699 700
            self.assertTrue(np.array_equal(tensor2.numpy(), arr2))
            tensor2._share_buffer_to(tensor)
            self.assertTrue(np.array_equal(tensor.numpy(), arr2))
            self.assertTrue(np.array_equal(tensor2.numpy(), arr2))
            self.assertTrue(tensor._is_shared_buffer_with(tensor2))
            self.assertTrue(tensor2._is_shared_buffer_with(tensor))
            tensor._share_buffer_to(tensor3)
            self.assertTrue(np.array_equal(tensor3.numpy(), arr2))
            self.assertTrue(tensor3._is_shared_buffer_with(tensor))

701 702 703 704 705 706 707 708 709 710
    def test_share_underline_tensor_to(self):
        with _test_eager_guard():
            arr = np.ones([4, 16, 16, 32]).astype('float32')
            arr1 = np.zeros([4, 16]).astype('float32')
            arr2 = np.ones([4, 16, 16, 32]).astype('float32') + np.ones(
                [4, 16, 16, 32]).astype('float32')
            tensor = None
            tensor2 = None
            tensor = paddle.to_tensor(arr, core.VarDesc.VarType.FP32,
                                      core.CPUPlace())
711
            tensor3 = core.eager.Tensor()
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
            if core.is_compiled_with_cuda():
                tensor2 = paddle.to_tensor(arr2, core.VarDesc.VarType.FP32,
                                           core.CUDAPlace(0))
            else:
                tensor2 = paddle.to_tensor(arr2, core.VarDesc.VarType.FP32,
                                           core.CPUPlace())
            self.assertTrue(np.array_equal(tensor.numpy(), arr))
            self.assertTrue(np.array_equal(tensor2.numpy(), arr2))
            tensor2._share_underline_tensor_to(tensor)
            self.assertTrue(np.array_equal(tensor.numpy(), arr2))
            self.assertTrue(np.array_equal(tensor2.numpy(), arr2))
            self.assertTrue(tensor._is_shared_underline_tensor_with(tensor2))
            self.assertTrue(tensor2._is_shared_underline_tensor_with(tensor))
            tensor._share_underline_tensor_to(tensor3)
            self.assertTrue(np.array_equal(tensor3.numpy(), arr2))
            self.assertTrue(tensor3._is_shared_underline_tensor_with(tensor))

729
    def test_properties(self):
J
Jiabin Yang 已提交
730 731
        print("Test_properties")
        with _test_eager_guard():
732 733
            paddle.set_device("cpu")
            arr = np.ones([4, 16, 16, 32]).astype('float32')
J
Jiabin Yang 已提交
734 735
            tensor = paddle.to_tensor(arr, core.VarDesc.VarType.FP32,
                                      core.CPUPlace())
736 737 738 739 740 741 742 743 744
            self.assertEqual(tensor.shape, [4, 16, 16, 32])
            tensor.name = 'tensor_name_test'
            self.assertEqual(tensor.name, 'tensor_name_test')
            self.assertEqual(tensor.persistable, False)
            tensor.persistable = True
            self.assertEqual(tensor.persistable, True)
            tensor.persistable = False
            self.assertEqual(tensor.persistable, False)
            self.assertTrue(tensor.place.is_cpu_place())
745
            self.assertEqual(tensor._place_str, 'Place(cpu)')
746 747 748 749 750
            self.assertEqual(tensor.stop_gradient, True)
            tensor.stop_gradient = False
            self.assertEqual(tensor.stop_gradient, False)
            tensor.stop_gradient = True
            self.assertEqual(tensor.stop_gradient, True)
751
            self.assertEqual(tensor.type, core.VarDesc.VarType.LOD_TENSOR)
752

J
Jiabin Yang 已提交
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
    def test_global_properties(self):
        print("Test_global_properties")
        self.assertFalse(core._in_eager_mode())
        with _test_eager_guard():
            self.assertTrue(core._in_eager_mode())
        self.assertFalse(core._in_eager_mode())

    def test_place_guard(self):
        core._enable_eager_mode()
        if core.is_compiled_with_cuda():
            paddle.set_device("gpu:0")
            with paddle.fluid.framework._dygraph_place_guard(core.CPUPlace()):
                self.assertTrue(core.eager._get_expected_place().is_cpu_place())
        else:
            paddle.set_device("cpu")
            with paddle.fluid.framework._dygraph_place_guard(core.CPUPlace()):
                self.assertTrue(core.eager._get_expected_place().is_cpu_place())
        core._disable_eager_mode()

772 773 774 775
    def test_value(self):
        with _test_eager_guard():
            arr = np.random.rand(4, 16, 16, 32).astype('float64')

776
            egr_tensor0 = core.eager.Tensor(value=arr)
777 778 779 780 781 782 783 784 785 786 787 788 789 790
            self.assertEqual(egr_tensor0.persistable, False)
            self.assertTrue("generated" in egr_tensor0.name)
            self.assertEqual(egr_tensor0.shape, [4, 16, 16, 32])
            self.assertTrue(
                egr_tensor0.place._equals(
                    paddle.fluid.framework._current_expected_place()))
            self.assertEqual(egr_tensor0.dtype, core.VarDesc.VarType.FP64)
            self.assertEqual(egr_tensor0.stop_gradient, True)
            self.assertTrue(egr_tensor0.value().get_tensor()._dtype(),
                            core.VarDesc.VarType.FP64)
            self.assertTrue(egr_tensor0.value().get_tensor()._place(),
                            paddle.fluid.framework._current_expected_place())
            self.assertTrue(egr_tensor0.value().get_tensor()._is_initialized())

791 792 793
    def test_set_value(self):
        with _test_eager_guard():
            ori_arr = np.random.rand(4, 16, 16, 32).astype('float32')
794
            egr_tensor = core.eager.Tensor(value=ori_arr)
795 796 797 798 799
            self.assertEqual(egr_tensor.stop_gradient, True)
            self.assertEqual(egr_tensor.shape, [4, 16, 16, 32])
            self.assertTrue(np.array_equal(egr_tensor.numpy(), ori_arr))
            ori_place = egr_tensor.place

J
Jiabin Yang 已提交
800
            new_arr = np.random.rand(4, 16, 16, 32).astype('float32')
801 802
            self.assertFalse(np.array_equal(egr_tensor.numpy(), new_arr))

J
Jiabin Yang 已提交
803
            egr_tensor.set_value(new_arr)
804 805
            self.assertEqual(egr_tensor.stop_gradient, True)
            self.assertTrue(egr_tensor.place._equals(ori_place))
J
Jiabin Yang 已提交
806
            self.assertEqual(egr_tensor.shape, [4, 16, 16, 32])
807 808
            self.assertTrue(np.array_equal(egr_tensor.numpy(), new_arr))

J
Jiabin Yang 已提交
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
    def test_sharding_related_api(self):
        with _test_eager_guard():
            arr0 = np.random.rand(4, 16, 16, 32).astype('float32')
            egr_tensor1 = core.eager.Tensor(arr0,
                                            core.CPUPlace(), True, False,
                                            "numpy_tensor1", False)
            self.assertEqual(egr_tensor1._numel(), 32768)
            self.assertEqual(egr_tensor1._slice(0, 2)._numel(), 16384)

    def test_copy_gradient_from(self):
        with _test_eager_guard():
            np_x = np.random.random((2, 2))
            np_y = np.random.random((2, 2))
            x = paddle.to_tensor(np_x, dtype="float64", stop_gradient=False)
            y = paddle.to_tensor(np_y, dtype="float64")
            out = x + x
            out.backward()
            x._copy_gradient_from(y)
            self.assertTrue(np.array_equal(x.grad.numpy(), np_y))

    def test_clear(self):
        with _test_eager_guard():
            np_x = np.random.random((3, 8, 8))
            x = paddle.to_tensor(np_x, dtype="float64")
            self.assertTrue(x._is_initialized())
            x._clear()
            self.assertFalse(x._is_initialized())

837

838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
class EagerParamBaseUsageTestCase(unittest.TestCase):
    def test_print(self):
        with _test_eager_guard():
            linear = paddle.nn.Linear(3, 3, bias_attr=False)
            print(linear.weight)

    def test_copy(self):
        with _test_eager_guard():
            linear = paddle.nn.Linear(1, 3)
            linear_copy = copy.deepcopy(linear)
            linear_copy2 = linear.weight._copy_to(core.CPUPlace(), True)
            self.assertTrue(
                np.array_equal(linear.weight.numpy(),
                               linear_copy.weight.numpy()))
            self.assertTrue(
                np.array_equal(linear.weight.numpy(), linear_copy2.numpy()))

    def func_fp16_initilaizer(self):
        paddle.set_default_dtype("float16")
        linear1 = paddle.nn.Linear(1, 3, bias_attr=False)
        linear2 = paddle.nn.Linear(
            1,
            3,
            bias_attr=False,
            weight_attr=paddle.fluid.initializer.Uniform())
        linear3 = paddle.nn.Linear(
            1,
            3,
            bias_attr=False,
            weight_attr=paddle.fluid.initializer.TruncatedNormalInitializer())
        linear4 = paddle.nn.Linear(
            1,
            3,
            bias_attr=False,
            weight_attr=paddle.fluid.initializer.MSRAInitializer())
        res = [
            linear1.weight.numpy(), linear2.weight.numpy(),
            linear3.weight.numpy(), linear4.weight.numpy()
        ]
        paddle.set_default_dtype("float32")
        return res

    def test_fp16_initializer(self):
        res1 = list()
        res2 = list()
        paddle.seed(102)
        paddle.framework.random._manual_program_seed(102)
        with _test_eager_guard():
            res1 = self.func_fp16_initilaizer()
        res2 = self.func_fp16_initilaizer()

        for i in range(len(res1)):
            self.assertTrue(np.array_equal(res1[i], res2[i]))

    def func_layer_helper_base(self, value):
        base = paddle.fluid.layer_helper_base.LayerHelperBase("test_layer",
                                                              "test_layer")
        return base.to_variable(value).numpy()

    def func_base_to_variable(self, value):
        paddle.fluid.dygraph.base.to_variable(value)

    def test_to_variable(self):
        value = np.random.rand(4, 16, 16, 32).astype('float32')
        res1 = None
        res3 = None
        with _test_eager_guard():
            res1 = self.func_layer_helper_base(value)
            res3 = self.func_base_to_variable(value)
        res2 = self.func_layer_helper_base(value)
        res4 = self.func_base_to_variable(value)
        self.assertTrue(np.array_equal(res1, res2))
        self.assertTrue(np.array_equal(res3, res4))

912
    def test_backward_with_single_tensor(self):
913 914
        with _test_eager_guard():
            arr4 = np.random.rand(4, 16, 16, 32).astype('float32')
915
            egr_tensor12 = core.eager.Tensor(arr4, core.CPUPlace())
916 917 918 919 920 921 922 923 924 925
            egr_tensor12.retain_grads()
            arr = np.ones([4, 16, 16, 32]).astype('float32')
            self.assertEqual(egr_tensor12.persistable, False)
            self.assertTrue("generated_tensor" in egr_tensor12.name)
            self.assertEqual(egr_tensor12.shape, [4, 16, 16, 32])
            self.assertEqual(egr_tensor12.dtype, core.VarDesc.VarType.FP32)
            self.assertEqual(egr_tensor12.stop_gradient, True)
            self.assertTrue(egr_tensor12.place._equals(paddle.fluid.CPUPlace()))
            self.assertTrue(np.array_equal(egr_tensor12.numpy(), arr4))
            self.assertTrue(np.array_equal(egr_tensor12.gradient(), None))
926
            egr_tensor12.stop_gradient = False
927 928
            egr_tensor12.backward()
            self.assertTrue(np.array_equal(egr_tensor12.gradient(), arr))
929

930 931 932 933 934 935 936
    def test_set_value(self):
        with _test_eager_guard():
            linear = paddle.nn.Linear(1, 3)
            ori_place = linear.weight.place
            new_weight = np.ones([1, 3]).astype('float32')
            self.assertFalse(np.array_equal(linear.weight.numpy(), new_weight))

J
Jiabin Yang 已提交
937
            linear.weight.set_value(new_weight)
938 939 940
            self.assertTrue(np.array_equal(linear.weight.numpy(), new_weight))
            self.assertTrue(linear.weight.place._equals(ori_place))

941

942 943 944 945 946 947 948
class EagerGuardTestCase(unittest.TestCase):
    def test__test_eager_guard(self):
        tracer = paddle.fluid.dygraph.tracer.Tracer()
        with _test_eager_guard(tracer):
            self.assertTrue(_in_eager_mode())


949 950
if __name__ == "__main__":
    unittest.main()