partial_program.py 37.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import numpy as np
17
import six
18

19
import paddle
20
from paddle.fluid import framework, backward, core, program_guard
21 22 23 24
from paddle.fluid.executor import (
    _is_enable_standalone_executor,
    _is_dy2st_enable_standalone_executor,
)
25
from paddle.fluid.dygraph import layers
26
from paddle.fluid.dygraph.base import switch_to_static_graph
27
from paddle.fluid.dygraph.dygraph_to_static import logging_utils
28 29 30
from paddle.fluid.dygraph.dygraph_to_static.return_transformer import (
    RETURN_NO_VALUE_MAGIC_NUM,
)
31 32
from paddle.fluid.layers.utils import flatten
from paddle.fluid.layers.utils import pack_sequence_as
33 34
from paddle.fluid.layers.utils import _hash_with_id
from paddle.fluid.compiler import BuildStrategy
35
from paddle.fluid.framework import _apply_pass
36 37 38 39 40 41 42 43 44 45 46
from paddle.fluid.contrib.mixed_precision.decorator import (
    AutoMixedPrecisionLists,
)
from paddle.fluid.contrib.mixed_precision.fp16_utils import (
    rewrite_program,
    cast_model_to_fp16,
)
from paddle.fluid.dygraph.amp.auto_cast import (
    _in_amp_guard,
    _in_pure_fp16_guard,
)
47
import paddle.compat as cpt
48
from paddle import _C_ops, _legacy_C_ops
49

50 51 52 53 54 55 56 57 58

class NestSequence(object):
    """
    A wrapper class that easily to flatten and restore the nest structure of
    given sequence.
    """

    def __init__(self, raw_input, need_check=False):
        self.__raw_input = raw_input
59
        self.__input_list = self.tolist()
60 61 62 63 64 65 66 67 68 69 70 71 72
        self.__var_ids = self._get_var_ids()
        self._check_non_variable(need_check)

    def tolist(self):
        """
        Flattens the nested sequences into single list.
        """
        return flatten(self.__raw_input)

    def restore(self, value_list):
        """
        Restores the nested sequence from value list.
        """
73
        assert len(self.__input_list) == len(value_list)
74 75 76 77
        return pack_sequence_as(self.__raw_input, value_list)

    def _get_var_ids(self):
        var_ids = []
78
        for idx, var in enumerate(self.__input_list):
79
            if isinstance(
80 81
                var, (framework.Variable, core.VarBase, core.eager.Tensor)
            ):
82 83 84 85 86 87 88 89 90 91
                var_ids.append(idx)

        return var_ids

    def _check_non_variable(self, need_check):
        """
        Raises warning if output of traced function contains non-tensor type values.
        """
        if need_check:
            warning_types = set()
92
            for var in self.__input_list:
93
                if not isinstance(
94 95
                    var, (framework.Variable, core.VarBase, core.eager.Tensor)
                ):
96 97
                    warning_types.add(type(var))
            if warning_types:
98
                logging_utils.warn(
99 100
                    "Output of traced function contains non-tensor type values: {}. "
                    "Currently, We don't support to update them while training and will return "
101 102 103 104
                    "what we first saw. Please try to return them as tensor.".format(
                        list(warning_types)
                    )
                )
105 106 107 108 109 110

    @property
    def var_ids(self):
        return self.__var_ids

    def __getitem__(self, item):
111
        return self.__input_list[item]
112

113

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
class LazyInitialized(object):
    """
    Descriptor to implement lazy initialization of property.
    """

    def __init__(self, function):
        self.function = function

    def __get__(self, instance, cls):
        val = self.function(instance)
        setattr(instance, self.function.__name__, val)
        return val


def _change_is_test_status(program, is_test):
    # change all `is_test` attributes
    for block in program.blocks:
        for op in block.ops:
            if op.has_attr('is_test'):
                op._set_attr('is_test', is_test)
    return program


137
class PartialProgramLayer:
138 139 140 141 142
    """
    PartialProgramLayer wraps all the ops from layers decorated by `@declarative`
    and execute them as a static subgraph.

    .. note::
143 144 145
        **1. This is a very low level API. Users should not use this API
             directly. Please use `partial_program_from(concrete_program)`
             to create it.
146 147 148 149 150 151 152 153 154 155 156 157
        **2. LoDTensorArray is not currently supported in the output.

    Args:
        main_program(Program): The main program that contains ops need to be executed.
        inputs(list[Variable]): The input list of the decorated function by `@declarative`.
        outputs(list[Variable]): The output list of the decorated function by `@declarative`.
        parameters(list[VarBase]|None): All trainable parameters included in the program. Default None.

    Returns:
        Layer: A Layer object that run all ops internally in static mode.
    """

158 159 160
    def __init__(
        self, main_program, inputs, outputs, parameters=None, **kwargs
    ):
161
        super(PartialProgramLayer, self).__init__()
162 163
        self._inputs = NestSequence(inputs)
        self._outputs = NestSequence(outputs, need_check=True)
164
        self._params = parameters if parameters is not None else []
165

166 167 168
        self._build_strategy = kwargs.get('build_strategy', BuildStrategy())
        assert isinstance(self._build_strategy, BuildStrategy)

169
        self._origin_main_program = self._verify_program(main_program)
170 171 172
        self._cuda_graph_vec = self._create_cuda_graph_vec()
        self._cuda_graph_capture_mode = ""
        self._cuda_graph_pool_id = 0
173
        # Set default mode to train
174
        self.training = True
175

176 177 178 179
        custom_white_list, custom_black_list = None, None
        tracer = framework._dygraph_tracer()
        if tracer:
            custom_white_list, custom_black_list = tracer._get_amp_op_list()
180
        # For AMP training
181 182
        self._amp_list = AutoMixedPrecisionLists(
            custom_white_list=custom_white_list,
183 184
            custom_black_list=custom_black_list,
        )
185

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
        # program_id -> list(scope)
        self._scope_cache = {}

    def _get_scope(self, program_id=None, use_scope_cache=False):
        if use_scope_cache:
            if program_id not in self._scope_cache:
                scope = core.Scope()
                self._scope_cache[program_id] = [scope]
                return scope
            else:
                for scope in self._scope_cache[program_id]:
                    if scope._can_reuesd:
                        return scope
                scope = core.Scope()
                self._scope_cache[program_id].append(scope)
                return scope
        else:
            return core.Scope()

205 206 207 208
    @LazyInitialized
    def _double_grads(self):
        return self._get_double_grads(self._origin_main_program)

209 210 211 212 213 214 215
    # whole
    @switch_to_static_graph
    def _create_program(self, is_infer_mode=False):
        if is_infer_mode:
            return self._origin_main_program.clone(for_test=is_infer_mode)
        else:
            train_program = self._append_backward_desc(
216 217
                self._origin_main_program
            )
218 219 220
            # Note: Only set grad type once after initializing train program. So we put it here.
            self._set_grad_type(self._params, train_program)
            return train_program
221

222 223 224 225 226 227 228 229 230 231 232
    @switch_to_static_graph
    def _create_amp_program(self, is_infer_mode=False):
        amp_program = self._origin_main_program.clone(for_test=is_infer_mode)
        with program_guard(amp_program):
            rewrite_program(amp_program, self._amp_list)
        if is_infer_mode:
            return amp_program
        else:
            train_amp_program = self._append_backward_desc(amp_program)
            self._set_grad_type(self._params, train_amp_program)
            return train_amp_program
233

234 235 236
    @switch_to_static_graph
    def _create_pure_fp16_program(self, is_infer_mode=False):
        pure_fp16_program = self._origin_main_program.clone(
237 238
            for_test=is_infer_mode
        )
239
        with program_guard(pure_fp16_program):
240 241 242
            cast_model_to_fp16(
                pure_fp16_program, self._amp_list, use_fp16_guard=False
            )
243 244 245 246
        if is_infer_mode:
            return pure_fp16_program
        else:
            train_pure_fp16_program = self._append_backward_desc(
247 248
                pure_fp16_program
            )
249 250
            self._set_grad_type(self._params, train_pure_fp16_program)
            return train_pure_fp16_program
251

252
    @switch_to_static_graph
253 254 255
    def _create_forward_backward_train_program(self):
        whole_program = self._create_program()
        forward_end_op_index = self._infer_program.desc.block(0).op_size()
256 257 258
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
259

260 261 262 263
    @switch_to_static_graph
    def _create_forward_backward_train_amp_program(self):
        whole_program = self._create_amp_program()
        forward_end_op_index = self._infer_amp_program.desc.block(0).op_size()
264 265 266
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
267 268 269 270 271

    @switch_to_static_graph
    def _create_forward_backward_train_pure_fp16_program(self):
        whole_program = self._create_pure_fp16_program()
        forward_end_op_index = self._infer_pure_fp16_program.desc.block(
272 273 274 275 276
            0
        ).op_size()
        return self._get_forward_backward_program_form(
            whole_program, forward_end_op_index
        )
277 278

    @LazyInitialized
279 280
    def _train_program(self):
        return self._create_program()
281

282
    @LazyInitialized
283 284
    def _infer_program(self):
        return self._create_program(is_infer_mode=True)
285

286 287 288 289 290 291 292
    @LazyInitialized
    def _train_amp_program(self):
        return self._create_amp_program()

    @LazyInitialized
    def _infer_amp_program(self):
        return self._create_amp_program(is_infer_mode=True)
293 294 295

    @LazyInitialized
    def _train_pure_fp16_program(self):
296
        return self._create_pure_fp16_program()
297

298
    @LazyInitialized
299 300
    def _infer_pure_fp16_program(self):
        return self._create_pure_fp16_program(is_infer_mode=True)
301

302
    @LazyInitialized
303 304 305
    def _train_forward_backward_program(self):
        program = self._create_forward_backward_train_program()
        return program
306 307

    @LazyInitialized
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
    def _train_amp_forward_backward_program(self):
        program = self._create_forward_backward_train_amp_program()
        return program

    @LazyInitialized
    def _train_pure_fp16_forward_backward_program(self):
        program = self._create_forward_backward_train_pure_fp16_program()
        return program

    @property
    def whole_program(self):
        if self.training:
            if _in_amp_guard():
                return self._train_amp_program
            elif _in_pure_fp16_guard():
                return self._train_pure_fp16_program
            else:
                return self._train_program
        else:
            if _in_amp_guard():
                return self._infer_amp_program
            elif _in_pure_fp16_guard():
                return self._infer_pure_fp16_program
            else:
                return self._infer_program

    @property
    def forward_program(self):
        if self.training:
            if _in_amp_guard():
                program = self._train_amp_forward_backward_program
                return program[0]
            elif _in_pure_fp16_guard():
                program = self._train_pure_fp16_forward_backward_program
                return program[0]
            else:
                program = self._train_forward_backward_program
                return program[0]
        else:
            if _in_amp_guard():
                return self._infer_amp_program
            elif _in_pure_fp16_guard():
                return self._infer_pure_fp16_program
            else:
                return self._infer_program

    @property
    def backward_program(self):
        if self.training:
            if _in_amp_guard():
                program = self._train_amp_forward_backward_program
                return program[1]
            elif _in_pure_fp16_guard():
                program = self._train_pure_fp16_forward_backward_program
                return program[1]
            else:
                program = self._train_forward_backward_program
                return program[1]
        else:
            return paddle.static.Program()
368

369 370
    @LazyInitialized
    def _train_program_id(self):
371
        program_id = _hash_with_id(self._train_program, self)
372 373 374
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
375
        return program_id
376

377 378 379 380
    @LazyInitialized
    def _infer_program_id(self):
        return _hash_with_id(self._infer_program, self)

381 382 383
    @LazyInitialized
    def _train_amp_program_id(self):
        program_id = _hash_with_id(self._train_amp_program, self)
384 385 386
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
387 388
        return program_id

389 390 391 392
    @LazyInitialized
    def _infer_amp_program_id(self):
        return _hash_with_id(self._infer_amp_program, self)

393 394 395
    @LazyInitialized
    def _train_pure_fp16_program_id(self):
        program_id = _hash_with_id(self._train_pure_fp16_program, self)
396 397 398
        core._set_cached_executor_build_strategy(
            program_id, self._build_strategy
        )
399 400
        return program_id

401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
    @LazyInitialized
    def _infer_pure_fp16_program_id(self):
        return _hash_with_id(self._infer_pure_fp16_program, self)

    @property
    def whole_program_id(self):
        if self.training:
            if _in_amp_guard():
                return self._train_amp_program_id
            elif _in_pure_fp16_guard():
                return self._train_pure_fp16_program_id
            else:
                return self._train_program_id
        else:
            if _in_amp_guard():
                return self._infer_amp_program_id
            elif _in_pure_fp16_guard():
                return self._infer_pure_fp16_program_id
            else:
                return self._infer_program_id

422 423 424 425 426 427 428 429 430 431 432 433
    def _verify_program(self, main_program):
        """
        Verify that the program parameter is initialized, prune some unused params,
        and remove redundant op callstack.
        """
        # 1. Check all params from main program can be found in self._params
        self._check_params_all_inited(main_program)
        # 2. Prune the parameters not used anywhere in the program.
        self._prune_unused_params(main_program)

        return main_program

434 435 436
    def prepare_gradient_aggregation(
        self, start_idx, main_program, target_program
    ):
437 438 439 440 441 442 443
        """
        Why we need add gradient aggregation operation ?
        In some cases, if non leaf nodes are used as output, gradient overwriting will occur, such as
        def forward(self, in):
            x = 2 * in  # <---- x is a non-leaf node in program.
            y = x + 3
            return x, y
444

445 446 447 448 449 450 451 452 453
        loss = forward(in)[0].sum()
        loss.backward()  # <----- x@grad will be overwrited by elementwise_add_grad Op
        """

        def _need_aggregation(var):
            """
            if exist a op whose inputs is var, then return True
            """
            if not isinstance(var, framework.Variable) or var.type not in [
454 455
                core.VarDesc.VarType.LOD_TENSOR,
                core.VarDesc.VarType.SELECTED_ROWS,
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
            ]:
                return False
            if var.dtype not in [paddle.float32, paddle.float64]:
                return False
            for op in main_program.block(0).ops:
                for in_arg in op.input_arg_names:
                    if in_arg == var.name:
                        return True
            return False

        def _insert_aggregation_ops_for_var(target_program, var):
            suffix = "@dy2static"
            var_grad_name = var.grad_name
            new_grad_name = var.name + suffix + "@GRAD"
            finded_ops = list(
                filter(
472 473 474 475 476 477 478 479 480 481
                    lambda x: x[0] >= start_idx
                    and any(
                        [
                            out_arg == var_grad_name
                            for out_arg in x[1].output_arg_names
                        ]
                    ),
                    enumerate(target_program.block(0).ops),
                )
            )
482 483 484 485 486 487

            # len(finded_ops) may equals zero when stop_gradient works.
            # len(finded_ops) may > 1, because we may have fill_constant op.
            if len(finded_ops) == 0:
                return None
            # step1: create a new var named var.name@GRAD
488 489 490 491 492 493
            target_program.block(0).create_var(
                name=new_grad_name,
                type=var.type,
                dtype=var.dtype,
                shape=var.shape,
            )
494 495 496 497 498 499 500 501 502 503
            # step2: rename the var.name@GRAD to var.name@GRAD@dy2static
            for idx, op in finded_ops:
                op._rename_input(var_grad_name, new_grad_name)
                op._rename_output(var_grad_name, new_grad_name)
            # step3: insert sum op to aggregate the gradient.
            #        var.name@GRAD = sum(var.name@dy2static@GRAD, var.name@GRAD)
            target_program.block(0)._insert_op(
                finded_ops[-1][0] + 1,
                type='sum',
                inputs={'X': [var_grad_name, new_grad_name]},
504 505
                outputs={"Out": var_grad_name},
            )
506 507 508
            return None

        to_processed_vars = list(
509 510
            filter(_need_aggregation, self._outputs.tolist())
        )
511 512 513
        for _var in to_processed_vars:
            _insert_aggregation_ops_for_var(target_program, _var)

514
    @switch_to_static_graph
515
    def _append_backward_desc(self, main_program):
516 517
        # make sure all status of is_test are False in train mode.
        program = _change_is_test_status(main_program.clone(), is_test=False)
518
        targets = []
519
        for out in self._outputs.tolist():
520 521 522
            if isinstance(out, framework.Variable):
                targets.append(program.global_block().var(out.name))

523
        if targets:
524 525
            backward.gradients(targets=targets, inputs=[])

526 527 528
        start_idx = len(main_program.block(0).ops) + 2 * len(
            self._outputs.tolist()
        )
529 530

        self.prepare_gradient_aggregation(start_idx, main_program, program)
531

532 533
        return program

534 535 536 537 538 539 540 541 542 543
    def _prune_unused_params(self, program):
        """
        Prune the parameters not used anywhere in the program.
        The `@declarative` may only decorated a sub function which
        contains some unused parameters created in `__init__`.
        So prune these parameters to avoid unnecessary operations in
        `run_program_op`.
        """
        required_params = []
        for param in self._params:
544
            found_param = False
545
            for block in program.blocks:
546
                for op in block.ops:
547 548 549 550
                    if (
                        param.name in op.input_arg_names
                        or param.name in op.output_arg_names
                    ):
551 552 553 554
                        required_params.append(param)
                        found_param = True
                        break
                if found_param:
555 556 557 558
                    break

        self._params = required_params

559 560 561 562 563 564
    def _get_double_grads(self, program):
        double_grads = []
        for block in program.blocks:
            for name in block.vars:
                if "@GRAD" in name:
                    var_desc = block.vars[name].desc
J
Jiabin Yang 已提交
565
                    var_base = None
J
Jiabin Yang 已提交
566
                    if not framework._in_eager_mode_:
567 568 569 570 571 572 573
                        var_base = core.VarBase(
                            var_desc.dtype(),
                            var_desc.shape(),
                            var_desc.name(),
                            var_desc.type(),
                            False,
                        )
J
Jiabin Yang 已提交
574
                    else:
575 576 577 578 579 580 581
                        var_base = core.eager.Tensor(
                            var_desc.dtype(),
                            var_desc.shape(),
                            var_desc.name(),
                            var_desc.type(),
                            False,
                        )
582
                    double_grads.append(var_base)
583
        return self._valid_vars(double_grads)
584

585
    def _get_end_op_index(self):
586 587 588 589 590
        if _in_amp_guard():
            infer_program = self._infer_amp_program
        elif _in_pure_fp16_guard():
            infer_program = self._infer_pure_fp16_program
        else:
591
            infer_program = self.infer_program
592 593
        return infer_program.desc.block(0).op_size()

594 595
    def __call__(self, inputs):
        in_vars, out_vars = self._prepare(inputs)
596

597 598
        self._cast_fp16_if_pure_fp16(in_vars)

599
        attrs = [
600
            'global_block',
601 602 603 604 605 606 607 608 609
            self.program.desc.block(0),
            'start_op_index',
            0,
            'end_op_index',
            self._get_end_op_index(),
            'is_test',
            not self.training,
            'program_id',
            self.program_id,
610 611 612
        ]
        if self._cuda_graph_capture_mode:
            attrs.extend(
613 614 615 616 617 618 619 620 621 622 623 624
                (
                    'cuda_graph_capture_mode',
                    self._cuda_graph_capture_mode,
                    'cuda_graph_pool_id',
                    self._cuda_graph_pool_id,
                )
            )

        use_interpretorcore = (
            _is_enable_standalone_executor()
            and _is_dy2st_enable_standalone_executor()
        )
625 626 627
        attrs.extend(('use_interpretorcore', use_interpretorcore))
        if use_interpretorcore:
            attrs.extend(
628 629 630 631 632 633 634
                (
                    'forward_global_block',
                    self.forward_program.desc.block(0),
                    'backward_global_block',
                    self.backward_program.desc.block(0),
                )
            )
635

636
            _legacy_C_ops.run_program(
637 638
                self._valid_vars(in_vars),
                self._valid_vars(self._params),
639
                self._valid_vars(out_vars),
640 641 642 643 644 645 646
                self._create_scope_vec(
                    program_id=self.program_id, use_scope_cache=True
                ),
                self._double_grads,
                self._cuda_graph_vec,
                *attrs
            )
647
        else:
648 649 650 651 652 653 654 655 656
            _legacy_C_ops.run_program(
                self._valid_vars(in_vars),
                self._valid_vars(self._params),
                self._valid_vars(out_vars),
                self._create_scope_vec(),
                self._double_grads,
                self._cuda_graph_vec,
                *attrs
            )
657 658
        restored_nest_out = self._restore_out(out_vars)
        return self._remove_no_value(restored_nest_out)
659

660 661 662 663
    def _cast_fp16_if_pure_fp16(self, in_vars):
        if _in_pure_fp16_guard():
            for i, var in enumerate(in_vars):
                name = var.name
664 665 666 667 668
                if (
                    self.program.global_block().has_var(name)
                    and self.program.global_block().var(name).dtype
                    == paddle.float16
                ):
669 670 671
                    in_vars[i] = var.astype('float16')
                    in_vars[i].name = name

672 673
    @property
    def program(self):
674
        return self.whole_program
675

676 677
    @property
    def program_id(self):
678
        return self.whole_program_id
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696

    @property
    def train_program(self):
        if _in_amp_guard():
            return self._train_amp_program
        elif _in_pure_fp16_guard():
            return self._train_pure_fp16_program
        else:
            return self._train_program

    @property
    def infer_program(self):
        if _in_amp_guard():
            return self._infer_amp_program
        elif _in_pure_fp16_guard():
            return self._infer_pure_fp16_program
        else:
            return self._infer_program
697

698
    @switch_to_static_graph
699 700 701
    def _get_forward_backward_program_form(
        self, whole_program, forward_end_op_index
    ):
702
        forward_builded_program = add_build_strategy_for(
703 704
            whole_program, 0, forward_end_op_index, self._build_strategy
        )
705
        backward_start_op_index = forward_end_op_index + 2 * len(
706 707
            self._outputs.var_ids
        )
708 709
        backward_end_op_index = whole_program.desc.block(0).op_size()
        backward_builded_program = add_build_strategy_for(
710 711 712 713 714 715 716 717
            whole_program,
            backward_start_op_index,
            backward_end_op_index,
            self._build_strategy,
        )
        self._apply_inplace_pass(
            forward_builded_program, backward_builded_program
        )
718 719 720 721 722 723
        return [forward_builded_program, backward_builded_program]

    def _apply_inplace_pass(self, forward_program, backward_program):
        attr_types = {
            "use_cuda": "bool",
            "mem_opt_skip_vars": "list[str]",
724
            "for_partial_block": "bool",
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
        }
        empty_startup_program = paddle.static.Program()
        use_cuda = True if core.is_compiled_with_cuda() else False
        # skip data var
        forward_mem_opt_skip_vars = []
        backward_mem_opt_skip_vars = []
        for var_name, var in forward_program.global_block().vars.items():
            if var.is_data:
                forward_mem_opt_skip_vars.append(var_name)
        for var_name, var in backward_program.global_block().vars.items():
            if var.is_data:
                backward_mem_opt_skip_vars.append(var_name)
        for var in self._inputs:
            if isinstance(var, paddle.fluid.framework.Variable):
                forward_mem_opt_skip_vars.append(var.desc.name())
                backward_mem_opt_skip_vars.append(var.desc.name())
        for var in self._outputs:
            if isinstance(var, paddle.fluid.framework.Variable):
                forward_mem_opt_skip_vars.append(var.desc.name())
                backward_mem_opt_skip_vars.append(var.desc.name())
        for var_name in core.parse_safe_eager_deletion_skip_vars(
746 747
            backward_program.desc
        ):
748 749 750 751
            forward_mem_opt_skip_vars.append(var_name)
        attrs = {
            "use_cuda": use_cuda,
            "mem_opt_skip_vars": forward_mem_opt_skip_vars,
752
            "for_partial_block": True,
753
        }
754 755 756 757 758 759 760
        _apply_pass(
            forward_program,
            empty_startup_program,
            "buffer_shared_inplace_pass",
            attrs,
            attr_types,
        )
761 762 763
        attrs = {
            "use_cuda": use_cuda,
            "mem_opt_skip_vars": backward_mem_opt_skip_vars,
764
            "for_partial_block": True,
765
        }
766 767 768 769 770 771 772
        _apply_pass(
            backward_program,
            empty_startup_program,
            "buffer_shared_inplace_pass",
            attrs,
            attr_types,
        )
773

774 775 776 777 778
    def _prepare(self, inputs):
        """
        Prepare inputs, outputs, attrs.
        """
        assert isinstance(inputs, (tuple, list))
779 780
        # Flatten inputs with nested structure into single list.
        flatten_inputs = flatten(inputs)
781 782
        # Convert variable into VarBase and feed in training data.
        input_vars = []
783
        expected_place = framework._current_expected_place()
784
        for i, value in enumerate(flatten_inputs):
785
            if isinstance(value, np.ndarray):
J
Jiabin Yang 已提交
786
                var = None
J
Jiabin Yang 已提交
787
                if not framework._in_eager_mode_:
788 789 790 791 792 793 794
                    var = core.VarBase(
                        value=value,
                        name=self._inputs[i].desc.name(),
                        persistable=False,
                        place=expected_place,
                        zero_copy=True,
                    )
J
Jiabin Yang 已提交
795
                else:
796 797 798 799 800 801 802
                    var = core.eager.Tensor(
                        value=value,
                        name=self._inputs[i].desc.name(),
                        persistable=False,
                        place=expected_place,
                        zero_copy=True,
                    )
J
Jiabin Yang 已提交
803
            elif isinstance(value, (core.VarBase, core.eager.Tensor)):
804 805 806 807
                # NOTE(Aurelius84): If var is on CPUPlace, it will be transformed multi times
                # into CUDAPlace when it's as input of multi Ops. so we move it in advance
                # to avoid this problem.
                if value.stop_gradient and not value.place._equals(
808 809
                    expected_place
                ):
810 811
                    var = value._copy_to(expected_place, False)
                    var.stop_gradient = True
812 813
                else:
                    var = value
814
                var.name = self._inputs[i].desc.name()
815 816 817
            else:
                continue
            input_vars.append(var)
818

819 820 821
        # mapping from name(string) -> VarBase
        out_varbase_map = {}

822 823
        def create_out(var_id):
            var = self._outputs[var_id]
824
            assert isinstance(var, framework.Variable)
825
            var_desc = var.desc
J
Jiabin Yang 已提交
826
            varbase = None
827 828 829 830

            if var_desc.name() in out_varbase_map:
                return out_varbase_map[var_desc.name()]

J
Jiabin Yang 已提交
831
            if not framework._in_eager_mode_:
832 833 834 835 836 837 838
                var_base = core.VarBase(
                    var_desc.dtype(),
                    var_desc.shape(),
                    var_desc.name(),
                    var_desc.type(),
                    False,
                )
J
Jiabin Yang 已提交
839
            else:
840 841 842 843 844 845 846
                var_base = core.eager.Tensor(
                    var_desc.dtype(),
                    var_desc.shape(),
                    var_desc.name(),
                    var_desc.type(),
                    False,
                )
847
            var_base.stop_gradient = var.stop_gradient
848
            out_varbase_map[var_desc.name()] = var_base
849 850 851 852 853 854
            return var_base

        # Create VarBase to receive output data.
        out_vars = list(map(create_out, self._outputs.var_ids))

        return input_vars, out_vars
855

856
    def _create_scope_vec(self, program_id=None, use_scope_cache=False):
857
        # Hold forward variables
J
Jiabin Yang 已提交
858
        tmp_scope_vec = None
859 860 861
        inner_scope = self._get_scope(
            program_id=program_id, use_scope_cache=use_scope_cache
        )
J
Jiabin Yang 已提交
862
        if not framework._in_eager_mode_:
863 864 865 866 867 868 869
            tmp_scope_vec = core.VarBase(
                core.VarDesc.VarType.FP32,
                [],
                "program_out_scope",
                core.VarDesc.VarType.STEP_SCOPES,
                True,
            )
J
Jiabin Yang 已提交
870
            tmp_scope_vec.value().set_scope(inner_scope)
871 872
        else:
            tmp_scope_vec = [inner_scope]
873
        return tmp_scope_vec
874

875
    def _create_cuda_graph_vec(self):
876 877 878 879 880 881 882
        var = core.VarBase(
            core.VarDesc.VarType.FP32,
            [],
            "cuda_graph",
            core.VarDesc.VarType.RAW,
            True,
        )
883 884 885
        var.stop_gradient = True
        return var

886 887 888 889 890 891 892 893 894
    def _restore_out(self, out_vars):
        """
        Restores same nested outputs by only replacing the Variable with VarBase.
        """

        flatten_outputs = self._outputs.tolist()
        for i, idx in enumerate(self._outputs.var_ids):
            flatten_outputs[idx] = out_vars[i]
        outs = self._outputs.restore(flatten_outputs)
895
        if outs is not None and len(outs) == 1:
896 897 898 899
            outs = outs[0]

        return outs

900 901 902 903
    @switch_to_static_graph
    def _clone_for_test(self, main_program):
        return main_program.clone(for_test=True)

904
    def _is_no_value(self, var):
905 906 907
        if isinstance(var, (core.VarBase, core.eager.Tensor)) and var.shape == [
            1
        ]:
908 909
            # NOTE: .numpy() will insert MemcpySync operation, it hits performance.
            if var.numpy()[0] == RETURN_NO_VALUE_MAGIC_NUM:
910 911 912 913 914 915 916
                return True
        return False

    def _remove_no_value(self, out_vars):
        """
        Removes invalid value for various-length return statement
        """
J
Jiabin Yang 已提交
917
        if isinstance(out_vars, (core.VarBase, core.eager.Tensor)):
918 919 920 921 922
            if self._is_no_value(out_vars):
                return None
            return out_vars
        elif isinstance(out_vars, (tuple, list)):
            if isinstance(out_vars, tuple):
923 924 925
                res = tuple(
                    var for var in out_vars if not self._is_no_value(var)
                )
926 927 928 929
            else:
                # isinstance(out_vars, list)
                res = [var for var in out_vars if not self._is_no_value(var)]

930
            has_removed = len(out_vars) > len(res)
931 932 933 934 935 936 937 938 939 940
            # len(out_vars) > len(res) means we have removed var. This is
            # preventing out_vars is empty or just one element at the beginning
            if len(res) == 0 and has_removed:
                return None
            elif len(res) == 1 and has_removed:
                return res[0]
            return res

        return out_vars

941
    def _set_grad_type(self, params, train_program):
942 943 944 945 946 947 948 949
        # NOTE: if user set sparse gradient mode, the param's gradient
        # will be SelectedRows, not LoDTensor. But tracer will just
        # set param grad VarBase by forward VarBase(LoDTensor)
        # If we don't change grad_var type here, RunProgramOp need
        # transform SelectedRows to LoDTensor forcibly, it may not
        # be user wanted result.
        for param in params:
            grad_name = param.name + core.grad_var_suffix()
950
            grad_var = train_program.desc.block(0).find_var(
951 952
                cpt.to_bytes(grad_name)
            )
953 954 955 956 957
            # NOTE: cannot find var desc maybe no problem, such as in batch_norm
            if grad_var is None:
                continue
            param._set_grad_type(grad_var.type())

958 959 960 961 962 963 964 965 966 967 968 969 970
    def _remove_op_call_stack(self, main_program):
        """
        Remove op's python call stack with redundant low-level error messages related to
        transforamtions to avoid confusing users.
        """
        assert isinstance(main_program, framework.Program)
        for block in main_program.blocks:
            for op in block.ops:
                if op.has_attr("op_callstack"):
                    op._remove_attr("op_callstack")

        return main_program

971 972 973 974 975 976 977 978 979 980
    def _check_params_all_inited(self, main_program):
        """
        Check all params from main program are already initialized, see details as follows:
            1. all parameters in self._params should be type `framework.ParamBase` which are created in dygraph.
            2. all parameters from transformed program can be found in self._params.
               Because they share same data with ParamBase of original dygraph.
        """
        if not isinstance(self._params, (list, tuple)):
            raise TypeError(
                "Type of self._params in PartialProgramLayer should be list or tuple, but received %s."
981 982
                % type(self._params)
            )
983

984 985 986
        param_and_buffer_names_set = set()
        for i, var in enumerate(self._params):
            # self._params constains parameters and buffers with persistable=True.
J
Jiabin Yang 已提交
987
            if not isinstance(var, (core.VarBase, core.eager.Tensor)):
988
                raise TypeError(
989 990 991 992
                    'Type of self._params[{}] in PartialProgramLayer should be Parameter or Variable, but received {}.'.format(
                        i, type(var)
                    )
                )
993
            param_and_buffer_names_set.add(var.name)
994 995

        for block in main_program.blocks:
996
            for name, var in six.iteritems(block.vars):
997
                if isinstance(var, framework.Parameter):
998
                    if name not in param_and_buffer_names_set:
999
                        raise ValueError(
1000 1001 1002 1003 1004 1005
                            "\n\tWe don't support to define layer with parameters in the function decorated by `@to_static`."
                            "\n\tBut we found parameter(%s) was created in the decorated function."
                            "\n"
                            "\n\tRevise suggestion: "
                            "\n\t\t1. Please ensure all your sublayers are inheritted from nn.Layer."
                            "\n\t\t2. Please use nn.ParameterList and nn.LayerList as container instead of using a native Python container such as List"
1006 1007
                            % name
                        )
1008

1009
    def _valid_vars(self, vars):
1010
        return vars if vars else None
1011

1012

1013
def _create_fake_var():
1014
    """
1015
    Create a fake_var (force on CPU) to handle empty input or output
1016
    """
J
Jiabin Yang 已提交
1017
    if not framework._in_eager_mode_:
J
Jiabin Yang 已提交
1018
        return [
1019 1020 1021 1022 1023 1024 1025
            core.VarBase(
                core.VarDesc.VarType.FP32,
                [],
                "Fake_var",
                core.VarDesc.VarType.RAW,
                False,
            )
J
Jiabin Yang 已提交
1026 1027
        ]
    else:
1028
        return [
1029 1030 1031 1032 1033 1034 1035
            core.eager.Tensor(
                core.VarDesc.VarType.FP32,
                [],
                "Fake_var",
                core.VarDesc.VarType.RAW,
                False,
            )
1036
        ]
1037 1038 1039 1040 1041 1042 1043


def partial_program_from(concrete_program):
    inputs = concrete_program.inputs
    if inputs and isinstance(inputs[0], layers.Layer):
        inputs = inputs[1:]

1044 1045 1046 1047 1048 1049 1050
    return PartialProgramLayer(
        concrete_program.main_program,
        inputs,
        concrete_program.outputs,
        concrete_program.parameters,
        **concrete_program.kwargs
    )
1051 1052 1053


@switch_to_static_graph
1054 1055 1056 1057
def add_build_strategy_for(
    program, start_op_index, end_op_index, build_strategy=None
):
    if start_op_index < end_op_index:
1058 1059
        compiled_program = paddle.static.CompiledProgram(
            core.Graph(program.desc, start_op_index, end_op_index),
1060 1061 1062 1063 1064
            build_strategy=build_strategy,
        )
        compiled_program._compile(
            core.Scope(), framework._current_expected_place()
        )
1065 1066 1067 1068 1069 1070 1071
        ir_graph = framework.IrGraph(compiled_program._graph)
        builded_program = ir_graph.to_program()
        if hasattr(compiled_program._program, 'lr_sheduler'):
            builded_program.lr_sheduler = compiled_program._program.lr_sheduler
    else:
        builded_program = program
    return builded_program