sequence_project.h 7.5 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "paddle/framework/eigen.h"
#include "paddle/framework/lod_tensor.h"
#include "paddle/framework/tensor.h"
#include "paddle/operators/math/im2col.h"

namespace paddle {
namespace operators {
namespace math {

//    template <typename T, int MajorType = Eigen::RowMajor,
//            typename IndexType = Eigen::DenseIndex>
//    using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
/*
C
chengduoZH 已提交
34 35
 * \brief SequenceProject projects features of context_length time-steps of each
 * instance.
C
chengduoZH 已提交
36
 *
C
chengduoZH 已提交
37 38 39 40
 * \param in            Input data.
 * \param inShape       The shape of Input data,
 *                      [minibatch, number_of_input_features].
 * \param inShape       A float LoDTensor.
C
chengduoZH 已提交
41
 *
C
chengduoZH 已提交
42 43 44 45
 * \param padding_data  Padding data.
 * \param inShape       The shape of Padding data,
 *                      [up_pad + down_pad, number_of_input_features].
 * \param inShape       A float LoDTensor.
C
chengduoZH 已提交
46
 *
C
chengduoZH 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
 * \param col           Col data.
 * \param inShape       The shape of Col data,
 *                      [minibatch, 1].
 * \param inShape       A float LoDTensor.
 *
 * For a mini-batch of 2 variable lengths sentences, containing 3, and 1
 * time-steps:
 *
 * Assumed input (X) is a [4, M, N] float LoDTensor, and X->lod()[0] = [0, 3,
 * 4].
 * Besides, for the sake of simplicity, we assume M=1 and N=2.
 *
 * X = [[a1, a2;
 *       b1, b2;
 *       c1, c2]
 *      [d1, d2]]
 *
 * This is to say that input (X) has 4 words and the dimension of each word
 * representation is 2.
 *
 * - Case1:
 * If context_start is -1 and padding_trainable is false, we use zero to pad
 * instead of learned weight to pad,
 * and the context_lenth is 3, the output (Out) is:
 *
 * Out =[[0,  0,  a1, a2, b1, b2;
 *        a1, a2, b1, b2, c1, c2;
 *        b1, b2, c1, c2, 0,  0 ]
 *       [0,  0,  d1, d2, 0,  0 ]]
 *
 * - Case2:
 * If context_start is -1 and padding_trainable is true, we use learned weight
 * to pad,
 * and the context_lenth is 3, the output (Out) is:
 *
 * Out = [[w1, w2, a1, a2, b1, b2;
 *         a1, a2, b1, b2, c1, c2;
 *         b1, b2, c1, c2, w3, w4]
 *        [w1, w2, d1, d2, w3, w4]]
C
chengduoZH 已提交
86 87 88 89 90 91 92
 *
 */

template <typename Place, typename T>
class SequenceProjectFunctor {
 public:
  void operator()(const platform::DeviceContext& context,
C
chengduoZH 已提交
93
                  const framework::LoDTensor* in,
C
chengduoZH 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
                  const framework::LoDTensor* padding_data,
                  framework::LoDTensor* col, bool padding_trainable,
                  int context_start, int context_length, int context_stride,
                  int up_pad, int down_pad) {
    auto lod_level_0 = in->lod()[0];

    paddle::operators::math::Im2ColFunctor<
        paddle::operators::math::ColFormat::kOCF, Place, float>
        im2col_ocf;

    int input_row_begin, input_row_end;
    int sequence_height, sequence_width;
    sequence_width = in->dims()[1];

    for (int i = 0; i < static_cast<int>(lod_level_0.size()) - 1; ++i) {
      input_row_begin = (context_start > 0)
                            ? static_cast<int>(lod_level_0[i]) + context_start
                            : static_cast<int>(lod_level_0[i]);
      input_row_end = static_cast<int>(lod_level_0[i + 1]);

      framework::Tensor out_t =
          col->Slice(static_cast<int>(lod_level_0[i]),
                     static_cast<int>(lod_level_0[i + 1]));

      sequence_height = static_cast<int>(out_t.dims()[0]);

      if (input_row_begin < input_row_end) {
        framework::Tensor in_t = in->Slice(input_row_begin, input_row_end);
C
chengduoZH 已提交
122 123 124 125 126 127 128 129

        std::vector<int64_t> output_shape(
            {sequence_height, 1, 1, context_length,
             sequence_width});  // output_height, output_width,
        // input_channels, filter_height, filter_width

        out_t.Resize(framework::make_ddim(output_shape));

C
chengduoZH 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
        std::vector<int64_t> input_shape(
            {1, input_row_end - input_row_begin,
             sequence_width});  // input_channels, input_height, input_width
        in_t.Resize(framework::make_ddim(input_shape));

        im2col_ocf(context, in_t, out_t,
                   /*stride_height*/ context_stride, /*stride_width*/ 0, up_pad,
                   down_pad);
      }

      if (padding_trainable) {
        // add up trainable data
        out_t.Resize(framework::make_ddim(
            {sequence_height * context_length, sequence_width}));

        if (up_pad > 0) {  // add up pad
          int padding_rows = std::min(
              up_pad, static_cast<int>(lod_level_0[i + 1] - lod_level_0[i]));

          for (int k = 0; k < padding_rows; ++k) {
            int padding_size =
                k + context_length < up_pad ? context_length : up_pad - k;
            framework::Tensor out_t_sub = out_t.Slice(
                k * context_length, k * context_length + padding_size);
            framework::Tensor w_sub = padding_data->Slice(k, k + padding_size);
            // in this block, using EigenVector<T>::Flatten is ok too.
            auto out_t_sub_e = EigenMatrix<T>::From(out_t_sub);
            auto w_sub_e = EigenMatrix<T>::From(w_sub);
            out_t_sub_e.device(*context.GetEigenDevice<Place>()) = w_sub_e;
          }
        }
        if (down_pad > 0) {  // add down pad
          int down_pad_begin_row =
              std::max(0,
                       (sequence_height - context_start - context_length) + 1) +
              1;
          int padding_begin = std::max(0, context_start - sequence_height);
          int padding_size =
              sequence_height - context_start >= context_length
                  ? 1
                  : context_length - (sequence_height - context_start);
          if (context_start >= sequence_height) padding_size = context_length;
          int padding_idx = padding_begin;
          for (int t = 0; t + down_pad_begin_row <= sequence_height;
               ++t, ++padding_size) {
            if (context_start >= sequence_height) padding_size = context_length;
            if (padding_size > context_length) {
              padding_size = context_length;
              padding_idx++;
            }
            if (padding_begin > 0 || sequence_height == context_start)
              padding_idx = padding_begin + t;
            framework::Tensor out_t_sub = out_t.Slice(
                (down_pad_begin_row + t) * context_length - padding_size,
                (down_pad_begin_row + t) * context_length);
            framework::Tensor w_sub = padding_data->Slice(
                up_pad + padding_idx, up_pad + padding_idx + padding_size);
            auto out_t_sub_e = EigenMatrix<T>::From(out_t_sub);
            auto w_sub_e = EigenMatrix<T>::From(w_sub);
            out_t_sub_e.device(*context.GetEigenDevice<Place>()) = w_sub_e;
          }
        }
      }
      out_t.Resize(framework::make_ddim(
          {sequence_height, context_length * sequence_width}));
    }
  }
};

}  // namespace math
}  // namespace operators
}  // namespace paddle