generate_proposal_labels_op.cc 27.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <math.h>
#include <algorithm>
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
17
#include "paddle/fluid/operators/detection/bbox_util.h"
18
#include "paddle/fluid/operators/gather.h"
C
chengduo 已提交
19
#include "paddle/fluid/operators/math/concat_and_split.h"
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
#include "paddle/fluid/operators/math/math_function.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
const int kBoxDim = 4;

template <typename T>
void AppendRois(LoDTensor* out, int64_t offset, Tensor* to_add) {
  auto* out_data = out->data<T>();
  auto* to_add_data = to_add->data<T>();
  memcpy(out_data + offset, to_add_data, to_add->numel() * sizeof(T));
}

class GenerateProposalLabelsOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("RpnRois"), true,
        platform::errors::NotFound("Input(RpnRois) shouldn't be null."));
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("GtClasses"), true,
        platform::errors::NotFound("Input(GtClasses) shouldn't be null."));
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("IsCrowd"), true,
        platform::errors::NotFound("Input(IsCrowd) shouldn't be null."));
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("GtBoxes"), true,
        platform::errors::NotFound("Input(GtBoxes) shouldn't be null."));
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("ImInfo"), true,
        platform::errors::NotFound("Input(ImInfo) shouldn't be null."));

    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("Rois"), true,
        platform::errors::NotFound(
            "Output(Rois) of GenerateProposalLabelsOp should not be null"));
    PADDLE_ENFORCE_EQ(ctx->HasOutput("LabelsInt32"), true,
                      platform::errors::NotFound("Output(LabelsInt32) of "
                                                 "GenerateProposalLabelsOp "
                                                 "should not be null"));
    PADDLE_ENFORCE_EQ(ctx->HasOutput("BboxTargets"), true,
                      platform::errors::NotFound("Output(BboxTargets) of "
                                                 "GenerateProposalLabelsOp "
                                                 "should not be null"));
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("BboxInsideWeights"), true,
        platform::errors::NotFound(
            "Output(BboxInsideWeights) of GenerateProposalLabelsOp "
            "should not be null"));
    PADDLE_ENFORCE_EQ(
        ctx->HasOutput("BboxOutsideWeights"), true,
        platform::errors::NotFound(
            "Output(BboxOutsideWeights) of GenerateProposalLabelsOp "
            "should not be null"));
79 80 81

    auto rpn_rois_dims = ctx->GetInputDim("RpnRois");
    auto gt_boxes_dims = ctx->GetInputDim("GtBoxes");
82
    auto im_info_dims = ctx->GetInputDim("ImInfo");
83 84

    PADDLE_ENFORCE_EQ(rpn_rois_dims.size(), 2,
85 86 87 88
                      platform::errors::InvalidArgument(
                          "The dimensions size of Input(RpnRois) must be 2. "
                          "But received dimensions size=[%d], dimensions=[%s].",
                          rpn_rois_dims.size(), rpn_rois_dims));
89
    PADDLE_ENFORCE_EQ(gt_boxes_dims.size(), 2,
90 91 92 93
                      platform::errors::InvalidArgument(
                          "The dimensions size of Input(GtBoxes) must be 2. "
                          "But received dimensions size=[%d], dimensions=[%s].",
                          gt_boxes_dims.size(), gt_boxes_dims));
94
    PADDLE_ENFORCE_EQ(im_info_dims.size(), 2,
95 96 97 98
                      platform::errors::InvalidArgument(
                          "The dimensions size of Input(ImInfo) must be 2. But "
                          "received dimensions size=[%d], dimensions=[%s].",
                          im_info_dims.size(), im_info_dims));
99 100 101 102

    int class_nums = ctx->Attrs().Get<int>("class_nums");

    ctx->SetOutputDim("Rois", {-1, 4});
103
    ctx->SetOutputDim("LabelsInt32", {-1, 1});
104 105 106 107 108 109 110 111
    ctx->SetOutputDim("BboxTargets", {-1, 4 * class_nums});
    ctx->SetOutputDim("BboxInsideWeights", {-1, 4 * class_nums});
    ctx->SetOutputDim("BboxOutsideWeights", {-1, 4 * class_nums});
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
112
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "RpnRois");
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
    return framework::OpKernelType(data_type, platform::CPUPlace());
  }
};

template <typename T>
void Concat(const platform::CPUDeviceContext& context,
            const Tensor& in_tensor_a, const Tensor& in_tensor_b,
            Tensor* out_tensor) {
  int axis = 0;
  std::vector<Tensor> inputs;
  inputs.emplace_back(in_tensor_a);
  inputs.emplace_back(in_tensor_b);
  math::ConcatFunctor<platform::CPUDeviceContext, T> concat_functor;
  concat_functor(context, inputs, axis, out_tensor);
}

template <typename T>
std::vector<std::vector<int>> SampleFgBgGt(
    const platform::CPUDeviceContext& context, Tensor* iou,
132 133
    const Tensor& is_crowd, const int batch_size_per_im,
    const float fg_fraction, const float fg_thresh, const float bg_thresh_hi,
134 135
    const float bg_thresh_lo, std::minstd_rand engine, const bool use_random,
    const bool is_cascade_rcnn, const Tensor& rpn_rois) {
136 137
  std::vector<int> fg_inds;
  std::vector<int> bg_inds;
138
  std::vector<int> mapped_gt_inds;
139 140 141
  int64_t gt_num = is_crowd.numel();
  const int* crowd_data = is_crowd.data<int>();
  T* proposal_to_gt_overlaps = iou->data<T>();
142 143 144
  int64_t row = iou->dims()[0];
  int64_t col = iou->dims()[1];
  float epsilon = 0.00001;
145
  const T* rpn_rois_dt = rpn_rois.data<T>();
146 147 148
  // Follow the Faster RCNN's implementation
  for (int64_t i = 0; i < row; ++i) {
    const T* v = proposal_to_gt_overlaps + i * col;
149

150
    T max_overlap = *std::max_element(v, v + col);
151 152 153
    if ((i < gt_num) && (crowd_data[i])) {
      max_overlap = -1.0;
    }
154 155 156 157 158 159 160
    if (is_cascade_rcnn &&
        ((rpn_rois_dt[i * 4 + 2] - rpn_rois_dt[i * 4 + 0] + 1) <= 0 ||
         (rpn_rois_dt[i * 4 + 3] - rpn_rois_dt[i * 4 + 1] + 1) <= 0)) {
      continue;
    }
    if (max_overlap >= fg_thresh) {
      // fg mapped gt label index
161 162 163 164 165
      for (int64_t j = 0; j < col; ++j) {
        T val = proposal_to_gt_overlaps[i * col + j];
        auto diff = std::abs(max_overlap - val);
        if (diff < epsilon) {
          fg_inds.emplace_back(i);
166
          mapped_gt_inds.emplace_back(j);
167 168 169
          break;
        }
      }
170 171
    } else if ((max_overlap >= bg_thresh_lo) && (max_overlap < bg_thresh_hi)) {
      bg_inds.emplace_back(i);
172
    } else {
173
      continue;
174 175 176
    }
  }

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
  std::vector<std::vector<int>> res;
  if (is_cascade_rcnn) {
    res.emplace_back(fg_inds);
    res.emplace_back(bg_inds);
    res.emplace_back(mapped_gt_inds);
  } else {
    // Reservoir Sampling
    // sampling fg
    std::uniform_real_distribution<float> uniform(0, 1);
    int fg_rois_per_im = std::floor(batch_size_per_im * fg_fraction);
    int fg_rois_this_image = fg_inds.size();
    int fg_rois_per_this_image = std::min(fg_rois_per_im, fg_rois_this_image);
    if (use_random) {
      const int64_t fg_size = static_cast<int64_t>(fg_inds.size());
      if (fg_size > fg_rois_per_this_image) {
        for (int64_t i = fg_rois_per_this_image; i < fg_size; ++i) {
          int rng_ind = std::floor(uniform(engine) * i);
          if (rng_ind < fg_rois_per_this_image) {
            std::iter_swap(fg_inds.begin() + rng_ind, fg_inds.begin() + i);
            std::iter_swap(mapped_gt_inds.begin() + rng_ind,
                           mapped_gt_inds.begin() + i);
          }
199
        }
200 201
      }
    }
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
    std::vector<int> new_fg_inds(fg_inds.begin(),
                                 fg_inds.begin() + fg_rois_per_this_image);
    std::vector<int> new_gt_inds(
        mapped_gt_inds.begin(),
        mapped_gt_inds.begin() + fg_rois_per_this_image);
    // sampling bg
    int bg_rois_per_image = batch_size_per_im - fg_rois_per_this_image;
    int bg_rois_this_image = bg_inds.size();
    int bg_rois_per_this_image =
        std::min(bg_rois_per_image, bg_rois_this_image);
    if (use_random) {
      const int64_t bg_size = static_cast<int64_t>(bg_inds.size());
      if (bg_size > bg_rois_per_this_image) {
        for (int64_t i = bg_rois_per_this_image; i < bg_size; ++i) {
          int rng_ind = std::floor(uniform(engine) * i);
          if (rng_ind < fg_rois_per_this_image)
            std::iter_swap(bg_inds.begin() + rng_ind, bg_inds.begin() + i);
        }
220
      }
221
    }
222 223 224 225 226 227
    std::vector<int> new_bg_inds(bg_inds.begin(),
                                 bg_inds.begin() + bg_rois_per_this_image);
    //
    res.emplace_back(new_fg_inds);
    res.emplace_back(new_bg_inds);
    res.emplace_back(new_gt_inds);
228
  }
229

230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
  return res;
}

template <typename T>
void GatherBoxesLabels(const platform::CPUDeviceContext& context,
                       const Tensor& boxes, const Tensor& gt_boxes,
                       const Tensor& gt_classes,
                       const std::vector<int>& fg_inds,
                       const std::vector<int>& bg_inds,
                       const std::vector<int>& gt_inds, Tensor* sampled_boxes,
                       Tensor* sampled_labels, Tensor* sampled_gts) {
  int fg_num = fg_inds.size();
  int bg_num = bg_inds.size();
  Tensor fg_inds_t, bg_inds_t, gt_box_inds_t, gt_label_inds_t;
  int* fg_inds_data = fg_inds_t.mutable_data<int>({fg_num}, context.GetPlace());
  int* bg_inds_data = bg_inds_t.mutable_data<int>({bg_num}, context.GetPlace());
  int* gt_box_inds_data =
247
      gt_box_inds_t.mutable_data<int>({fg_num}, context.GetPlace());
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
  int* gt_label_inds_data =
      gt_label_inds_t.mutable_data<int>({fg_num}, context.GetPlace());
  std::copy(fg_inds.begin(), fg_inds.end(), fg_inds_data);
  std::copy(bg_inds.begin(), bg_inds.end(), bg_inds_data);
  std::copy(gt_inds.begin(), gt_inds.end(), gt_box_inds_data);
  std::copy(gt_inds.begin(), gt_inds.end(), gt_label_inds_data);

  Tensor fg_boxes, bg_boxes, fg_labels, bg_labels;
  fg_boxes.mutable_data<T>({fg_num, kBoxDim}, context.GetPlace());
  CPUGather<T>(context, boxes, fg_inds_t, &fg_boxes);
  bg_boxes.mutable_data<T>({bg_num, kBoxDim}, context.GetPlace());
  CPUGather<T>(context, boxes, bg_inds_t, &bg_boxes);
  Concat<T>(context, fg_boxes, bg_boxes, sampled_boxes);
  CPUGather<T>(context, gt_boxes, gt_box_inds_t, sampled_gts);
  fg_labels.mutable_data<int>({fg_num}, context.GetPlace());
  CPUGather<int>(context, gt_classes, gt_label_inds_t, &fg_labels);
  bg_labels.mutable_data<int>({bg_num}, context.GetPlace());
  math::set_constant(context, &bg_labels, 0);
  Concat<int>(context, fg_labels, bg_labels, sampled_labels);
}

template <typename T>
std::vector<Tensor> SampleRoisForOneImage(
271 272 273 274
    const platform::CPUDeviceContext& context, const Tensor& rpn_rois_in,
    const Tensor& gt_classes, const Tensor& is_crowd, const Tensor& gt_boxes,
    const Tensor& im_info, const int batch_size_per_im, const float fg_fraction,
    const float fg_thresh, const float bg_thresh_hi, const float bg_thresh_lo,
275
    const std::vector<float>& bbox_reg_weights, const int class_nums,
276 277 278
    std::minstd_rand engine, bool use_random, bool is_cascade_rcnn,
    bool is_cls_agnostic) {
  // 1.1 map to original image
279
  auto im_scale = im_info.data<T>()[2];
280

281 282 283 284 285 286 287 288 289
  Tensor rpn_rois;
  rpn_rois.mutable_data<T>(rpn_rois_in.dims(), context.GetPlace());
  const T* rpn_rois_in_dt = rpn_rois_in.data<T>();
  T* rpn_rois_dt = rpn_rois.data<T>();
  int gt_num = gt_boxes.dims()[0] * 4;
  for (int i = 0; i < rpn_rois.numel(); ++i) {
    if (i < gt_num && is_cascade_rcnn) {
      rpn_rois_dt[i] = rpn_rois_in_dt[i];
    } else {
290 291
      rpn_rois_dt[i] = rpn_rois_in_dt[i] / im_scale;
    }
292
  }
293

294
  // 1.2 compute overlaps
295 296 297 298
  int proposals_num = rpn_rois.dims()[0];
  if (!is_cascade_rcnn) {
    proposals_num += gt_boxes.dims()[0];
  }
299
  Tensor proposal_to_gt_overlaps;
300
  proposal_to_gt_overlaps.mutable_data<T>({proposals_num, gt_boxes.dims()[0]},
301 302
                                          context.GetPlace());

303 304 305 306 307 308 309 310 311 312 313
  Tensor boxes;
  boxes.mutable_data<T>({proposals_num, kBoxDim}, context.GetPlace());
  if (!is_cascade_rcnn) {
    Concat<T>(context, gt_boxes, rpn_rois, &boxes);
  } else {
    T* boxes_dt = boxes.data<T>();
    for (int i = 0; i < boxes.numel(); ++i) {
      boxes_dt[i] = rpn_rois_dt[i];
    }
  }
  BboxOverlaps<T>(boxes, gt_boxes, &proposal_to_gt_overlaps);
314
  // Generate proposal index
315 316 317 318
  std::vector<std::vector<int>> fg_bg_gt =
      SampleFgBgGt<T>(context, &proposal_to_gt_overlaps, is_crowd,
                      batch_size_per_im, fg_fraction, fg_thresh, bg_thresh_hi,
                      bg_thresh_lo, engine, use_random, is_cascade_rcnn, boxes);
319 320
  std::vector<int> fg_inds = fg_bg_gt[0];
  std::vector<int> bg_inds = fg_bg_gt[1];
321
  std::vector<int> mapped_gt_inds = fg_bg_gt[2];  // mapped_gt_labels
322 323 324

  // Gather boxes and labels
  Tensor sampled_boxes, sampled_labels, sampled_gts;
325 326 327
  int fg_num = fg_inds.size();
  int bg_num = bg_inds.size();
  int boxes_num = fg_num + bg_num;
328 329 330
  framework::DDim bbox_dim({boxes_num, kBoxDim});
  sampled_boxes.mutable_data<T>(bbox_dim, context.GetPlace());
  sampled_labels.mutable_data<int>({boxes_num}, context.GetPlace());
331
  sampled_gts.mutable_data<T>({fg_num, kBoxDim}, context.GetPlace());
332
  GatherBoxesLabels<T>(context, boxes, gt_boxes, gt_classes, fg_inds, bg_inds,
333 334
                       mapped_gt_inds, &sampled_boxes, &sampled_labels,
                       &sampled_gts);
335 336 337 338

  // Compute targets
  Tensor bbox_targets_single;
  bbox_targets_single.mutable_data<T>(bbox_dim, context.GetPlace());
339 340
  BoxToDelta<T>(fg_num, sampled_boxes, sampled_gts, bbox_reg_weights.data(),
                false, &bbox_targets_single);
341 342 343 344 345 346

  // Scale rois
  Tensor sampled_rois;
  sampled_rois.mutable_data<T>(sampled_boxes.dims(), context.GetPlace());
  auto sampled_rois_et = framework::EigenTensor<T, 2>::From(sampled_rois);
  auto sampled_boxes_et = framework::EigenTensor<T, 2>::From(sampled_boxes);
347
  sampled_rois_et = sampled_boxes_et * im_scale;
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367

  // Expand box targets
  Tensor bbox_targets, bbox_inside_weights, bbox_outside_weights;
  framework::DDim bbox_expand_dim({boxes_num, kBoxDim * class_nums});
  bbox_targets.mutable_data<T>(bbox_expand_dim, context.GetPlace());
  bbox_inside_weights.mutable_data<T>(bbox_expand_dim, context.GetPlace());
  bbox_outside_weights.mutable_data<T>(bbox_expand_dim, context.GetPlace());
  math::set_constant(context, &bbox_targets, 0.0);
  math::set_constant(context, &bbox_inside_weights, 0.0);
  math::set_constant(context, &bbox_outside_weights, 0.0);

  auto* bbox_targets_single_data = bbox_targets_single.data<T>();
  auto* sampled_labels_data = sampled_labels.data<int>();
  auto* bbox_targets_data = bbox_targets.data<T>();
  auto* bbox_inside_weights_data = bbox_inside_weights.data<T>();
  auto* bbox_outside_weights_data = bbox_outside_weights.data<T>();
  int width = kBoxDim * class_nums;
  for (int64_t i = 0; i < boxes_num; ++i) {
    int label = sampled_labels_data[i];
    if (label > 0) {
368 369 370
      if (is_cls_agnostic) {
        label = 1;
      }
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
      int dst_idx = i * width + kBoxDim * label;
      int src_idx = kBoxDim * i;
      bbox_targets_data[dst_idx] = bbox_targets_single_data[src_idx];
      bbox_targets_data[dst_idx + 1] = bbox_targets_single_data[src_idx + 1];
      bbox_targets_data[dst_idx + 2] = bbox_targets_single_data[src_idx + 2];
      bbox_targets_data[dst_idx + 3] = bbox_targets_single_data[src_idx + 3];
      bbox_inside_weights_data[dst_idx] = 1;
      bbox_inside_weights_data[dst_idx + 1] = 1;
      bbox_inside_weights_data[dst_idx + 2] = 1;
      bbox_inside_weights_data[dst_idx + 3] = 1;
      bbox_outside_weights_data[dst_idx] = 1;
      bbox_outside_weights_data[dst_idx + 1] = 1;
      bbox_outside_weights_data[dst_idx + 2] = 1;
      bbox_outside_weights_data[dst_idx + 3] = 1;
    }
  }
  std::vector<Tensor> res;
  res.emplace_back(sampled_rois);
  res.emplace_back(sampled_labels);
  res.emplace_back(bbox_targets);
  res.emplace_back(bbox_inside_weights);
  res.emplace_back(bbox_outside_weights);
  return res;
}

template <typename T>
class GenerateProposalLabelsKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* rpn_rois = context.Input<LoDTensor>("RpnRois");
    auto* gt_classes = context.Input<LoDTensor>("GtClasses");
402
    auto* is_crowd = context.Input<LoDTensor>("IsCrowd");
403
    auto* gt_boxes = context.Input<LoDTensor>("GtBoxes");
404
    auto* im_info = context.Input<LoDTensor>("ImInfo");
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420

    auto* rois = context.Output<LoDTensor>("Rois");
    auto* labels_int32 = context.Output<LoDTensor>("LabelsInt32");
    auto* bbox_targets = context.Output<LoDTensor>("BboxTargets");
    auto* bbox_inside_weights = context.Output<LoDTensor>("BboxInsideWeights");
    auto* bbox_outside_weights =
        context.Output<LoDTensor>("BboxOutsideWeights");

    int batch_size_per_im = context.Attr<int>("batch_size_per_im");
    float fg_fraction = context.Attr<float>("fg_fraction");
    float fg_thresh = context.Attr<float>("fg_thresh");
    float bg_thresh_hi = context.Attr<float>("bg_thresh_hi");
    float bg_thresh_lo = context.Attr<float>("bg_thresh_lo");
    std::vector<float> bbox_reg_weights =
        context.Attr<std::vector<float>>("bbox_reg_weights");
    int class_nums = context.Attr<int>("class_nums");
421
    bool use_random = context.Attr<bool>("use_random");
422 423
    bool is_cascade_rcnn = context.Attr<bool>("is_cascade_rcnn");
    bool is_cls_agnostic = context.Attr<bool>("is_cls_agnostic");
424 425 426 427 428 429
    PADDLE_ENFORCE_EQ(
        rpn_rois->lod().size(), 1UL,
        platform::errors::InvalidArgument(
            "GenerateProposalLabelsOp rpn_rois needs 1 level of LoD. But "
            "received level of LoD is [%d], LoD is [%s].",
            rpn_rois->lod().size(), rpn_rois->lod()));
430 431
    PADDLE_ENFORCE_EQ(
        gt_classes->lod().size(), 1UL,
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
        platform::errors::InvalidArgument(
            "GenerateProposalLabelsOp gt_classes needs 1 level of LoD. But "
            "received level of LoD is [%d], LoD is [%s].",
            gt_classes->lod().size(), gt_classes->lod()));
    PADDLE_ENFORCE_EQ(
        is_crowd->lod().size(), 1UL,
        platform::errors::InvalidArgument(
            "GenerateProposalLabelsOp is_crowd needs 1 level of LoD. But "
            "received level of LoD is [%d], LoD is [%s].",
            is_crowd->lod().size(), is_crowd->lod()));
    PADDLE_ENFORCE_EQ(
        gt_boxes->lod().size(), 1UL,
        platform::errors::InvalidArgument(
            "GenerateProposalLabelsOp gt_boxes needs 1 level of LoD. But "
            "received level of LoD is [%d], LoD is [%s].",
            gt_boxes->lod().size(), gt_boxes->lod()));
448 449 450
    int64_t n = static_cast<int64_t>(rpn_rois->lod().back().size() - 1);

    rois->mutable_data<T>({n * batch_size_per_im, kBoxDim}, context.GetPlace());
451
    labels_int32->mutable_data<int>({n * batch_size_per_im, 1},
452 453 454 455 456 457 458 459 460 461
                                    context.GetPlace());
    bbox_targets->mutable_data<T>({n * batch_size_per_im, kBoxDim * class_nums},
                                  context.GetPlace());
    bbox_inside_weights->mutable_data<T>(
        {n * batch_size_per_im, kBoxDim * class_nums}, context.GetPlace());
    bbox_outside_weights->mutable_data<T>(
        {n * batch_size_per_im, kBoxDim * class_nums}, context.GetPlace());

    std::random_device rnd;
    std::minstd_rand engine;
462
    int seed = rnd();
463 464 465 466 467 468 469 470 471 472
    engine.seed(seed);

    framework::LoD lod;
    std::vector<size_t> lod0(1, 0);

    int64_t num_rois = 0;
    auto& dev_ctx = context.device_context<platform::CPUDeviceContext>();

    auto rpn_rois_lod = rpn_rois->lod().back();
    auto gt_classes_lod = gt_classes->lod().back();
473
    auto is_crowd_lod = is_crowd->lod().back();
474
    auto gt_boxes_lod = gt_boxes->lod().back();
475
    for (int i = 0; i < n; ++i) {
476 477 478 479
      if (rpn_rois_lod[i] == rpn_rois_lod[i + 1]) {
        lod0.emplace_back(num_rois);
        continue;
      }
480 481 482 483
      Tensor rpn_rois_slice =
          rpn_rois->Slice(rpn_rois_lod[i], rpn_rois_lod[i + 1]);
      Tensor gt_classes_slice =
          gt_classes->Slice(gt_classes_lod[i], gt_classes_lod[i + 1]);
484 485
      Tensor is_crowd_slice =
          is_crowd->Slice(is_crowd_lod[i], is_crowd_lod[i + 1]);
486 487
      Tensor gt_boxes_slice =
          gt_boxes->Slice(gt_boxes_lod[i], gt_boxes_lod[i + 1]);
488
      Tensor im_info_slice = im_info->Slice(i, i + 1);
489
      std::vector<Tensor> tensor_output = SampleRoisForOneImage<T>(
490 491
          dev_ctx, rpn_rois_slice, gt_classes_slice, is_crowd_slice,
          gt_boxes_slice, im_info_slice, batch_size_per_im, fg_fraction,
492
          fg_thresh, bg_thresh_hi, bg_thresh_lo, bbox_reg_weights, class_nums,
493
          engine, use_random, is_cascade_rcnn, is_cls_agnostic);
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
      Tensor sampled_rois = tensor_output[0];
      Tensor sampled_labels_int32 = tensor_output[1];
      Tensor sampled_bbox_targets = tensor_output[2];
      Tensor sampled_bbox_inside_weights = tensor_output[3];
      Tensor sampled_bbox_outside_weights = tensor_output[4];

      AppendRois<T>(rois, kBoxDim * num_rois, &sampled_rois);
      AppendRois<int>(labels_int32, num_rois, &sampled_labels_int32);
      AppendRois<T>(bbox_targets, kBoxDim * num_rois * class_nums,
                    &sampled_bbox_targets);
      AppendRois<T>(bbox_inside_weights, kBoxDim * num_rois * class_nums,
                    &sampled_bbox_inside_weights);
      AppendRois<T>(bbox_outside_weights, kBoxDim * num_rois * class_nums,
                    &sampled_bbox_outside_weights);

      num_rois += sampled_rois.dims()[0];
      lod0.emplace_back(num_rois);
    }

    lod.emplace_back(lod0);
    rois->set_lod(lod);
    labels_int32->set_lod(lod);
    bbox_targets->set_lod(lod);
    bbox_inside_weights->set_lod(lod);
    bbox_outside_weights->set_lod(lod);
    rois->Resize({num_rois, kBoxDim});
520
    labels_int32->Resize({num_rois, 1});
521 522 523 524 525 526 527 528 529
    bbox_targets->Resize({num_rois, kBoxDim * class_nums});
    bbox_inside_weights->Resize({num_rois, kBoxDim * class_nums});
    bbox_outside_weights->Resize({num_rois, kBoxDim * class_nums});
  }
};

class GenerateProposalLabelsOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
B
buxingyuan 已提交
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
    AddInput(
        "RpnRois",
        "(LoDTensor), This input is a 2D LoDTensor with shape [N, 4]. "
        "N is the number of the GenerateProposalOp's output, "
        "each element is a bounding box with [xmin, ymin, xmax, ymax] format.");
    AddInput("GtClasses",
             "(LoDTensor), This input is a 2D LoDTensor with shape [M, 1]. "
             "M is the number of groundtruth, "
             "each element is a class label of groundtruth.");
    AddInput(
        "IsCrowd",
        "(LoDTensor), This input is a 2D LoDTensor with shape [M, 1]. "
        "M is the number of groundtruth, "
        "each element is a flag indicates whether a groundtruth is crowd.");
    AddInput(
        "GtBoxes",
        "(LoDTensor), This input is a 2D LoDTensor with shape [M, 4]. "
        "M is the number of groundtruth, "
        "each element is a bounding box with [xmin, ymin, xmax, ymax] format.");
    AddInput("ImInfo",
             "(Tensor), This input is a 2D Tensor with shape [B, 3]. "
             "B is the number of input images, "
             "each element consists of im_height, im_width, im_scale.");

    AddOutput(
        "Rois",
        "(LoDTensor), This output is a 2D LoDTensor with shape [P, 4]. "
        "P usuall equal to  batch_size_per_im * batch_size, "
        "each element is a bounding box with [xmin, ymin, xmax, ymax] format.");
    AddOutput("LabelsInt32",
560
              "(LoDTensor), This output is a 2D LoDTensor with shape [P, 1], "
T
tianshuo78520a 已提交
561
              "each element represents a class label of a roi");
B
buxingyuan 已提交
562 563 564
    AddOutput("BboxTargets",
              "(LoDTensor), This output is a 2D LoDTensor with shape [P, 4 * "
              "class_nums], "
T
tianshuo78520a 已提交
565
              "each element represents a box label of a roi");
B
buxingyuan 已提交
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
    AddOutput(
        "BboxInsideWeights",
        "(LoDTensor), This output is a 2D LoDTensor with shape [P, 4 * "
        "class_nums], "
        "each element indicates whether a box should contribute to loss.");
    AddOutput(
        "BboxOutsideWeights",
        "(LoDTensor), This output is a 2D LoDTensor with shape [P, 4 * "
        "class_nums], "
        "each element indicates whether a box should contribute to loss.");

    AddAttr<int>("batch_size_per_im", "Batch size of rois per images.");
    AddAttr<float>("fg_fraction",
                   "Foreground fraction in total batch_size_per_im.");
    AddAttr<float>(
        "fg_thresh",
        "Overlap threshold which is used to chose foreground sample.");
    AddAttr<float>("bg_thresh_hi",
                   "Overlap threshold upper bound which is used to chose "
                   "background sample.");
    AddAttr<float>("bg_thresh_lo",
                   "Overlap threshold lower bound which is used to chose "
                   "background sample.");
    AddAttr<std::vector<float>>("bbox_reg_weights", "Box regression weights.");
    AddAttr<int>("class_nums", "Class number.");
    AddAttr<bool>(
        "use_random",
        "Use random sampling to choose foreground and background boxes.")
        .SetDefault(true);
595 596 597 598 599 600 601
    AddAttr<bool>("is_cascade_rcnn",
                  "cascade rcnn sampling policy changed from stage 2.")
        .SetDefault(false);
    AddAttr<bool>(
        "is_cls_agnostic",
        "the box regress will only include fg and bg locations if set true ")
        .SetDefault(false);
602 603

    AddComment(R"DOC(
B
buxingyuan 已提交
604
This operator can be, for given the GenerateProposalOp output bounding boxes and groundtruth,
B
buxingyuan 已提交
605
to sample foreground boxes and background boxes, and compute loss target.
B
buxingyuan 已提交
606 607 608

RpnRois is the output boxes of RPN and was processed by generate_proposal_op, these boxes
were combined with groundtruth boxes and sampled according to batch_size_per_im and fg_fraction,
B
buxingyuan 已提交
609
If an instance with a groundtruth overlap greater than fg_thresh, then it was considered as a foreground sample.
B
buxingyuan 已提交
610 611
If an instance with a groundtruth overlap greater than bg_thresh_lo and lower than bg_thresh_hi,
then it was considered as a background sample.
B
buxingyuan 已提交
612
After all foreground and background boxes are chosen (so called Rois),
B
buxingyuan 已提交
613
then we apply random sampling to make sure
B
buxingyuan 已提交
614
the number of foreground boxes is no more than batch_size_per_im * fg_fraction.
B
buxingyuan 已提交
615 616 617 618

For each box in Rois, we assign the classification (class label) and regression targets (box label) to it.
Finally BboxInsideWeights and BboxOutsideWeights are used to specify whether it would contribute to training loss.
    )DOC");
619 620 621 622 623 624 625
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
626 627 628 629 630
REGISTER_OPERATOR(
    generate_proposal_labels, ops::GenerateProposalLabelsOp,
    ops::GenerateProposalLabelsOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
631 632 633
REGISTER_OP_CPU_KERNEL(generate_proposal_labels,
                       ops::GenerateProposalLabelsKernel<float>,
                       ops::GenerateProposalLabelsKernel<double>);