test_rnn_nets.py 12.3 KB
Newer Older
F
Feiyu Chan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
paddle.set_default_dtype("float64")
from paddle.fluid.layers import sequence_mask

import numpy as np
import unittest

from convert import convert_params_for_net
from rnn_numpy import SimpleRNN, LSTM, GRU


class TestSimpleRNN(unittest.TestCase):
    def __init__(self, time_major=True, direction="forward", place="cpu"):
        super(TestSimpleRNN, self).__init__("runTest")
        self.time_major = time_major
        self.direction = direction
        self.num_directions = 2 if direction == "bidirectional" else 1
32
        self.place = place
F
Feiyu Chan 已提交
33 34

    def setUp(self):
35 36 37 38
        # Since `set_device` is global, set `set_device` in `setUp` rather than
        # `__init__` to avoid using an error device set by another test case.
        place = paddle.set_device(self.place)
        paddle.disable_static(place)
F
Feiyu Chan 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
        rnn1 = SimpleRNN(
            16, 32, 2, time_major=self.time_major, direction=self.direction)
        rnn2 = paddle.nn.SimpleRNN(
            16, 32, 2, time_major=self.time_major, direction=self.direction)
        convert_params_for_net(rnn1, rnn2)

        self.rnn1 = rnn1
        self.rnn2 = rnn2

    def test_with_initial_state(self):
        rnn1 = self.rnn1
        rnn2 = self.rnn2

        x = np.random.randn(12, 4, 16)
        if not self.time_major:
            x = np.transpose(x, [1, 0, 2])
        prev_h = np.random.randn(2 * self.num_directions, 4, 32)

        y1, h1 = rnn1(x, prev_h)
58
        y2, h2 = rnn2(paddle.to_tensor(x), paddle.to_tensor(prev_h))
F
Feiyu Chan 已提交
59 60 61 62 63 64 65 66 67 68 69 70
        np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5)

    def test_with_zero_state(self):
        rnn1 = self.rnn1
        rnn2 = self.rnn2

        x = np.random.randn(12, 4, 16)
        if not self.time_major:
            x = np.transpose(x, [1, 0, 2])

        y1, h1 = rnn1(x)
71
        y2, h2 = rnn2(paddle.to_tensor(x))
F
Feiyu Chan 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85
        np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5)

    def test_with_input_lengths(self):
        rnn1 = self.rnn1
        rnn2 = self.rnn2

        x = np.random.randn(12, 4, 16)
        if not self.time_major:
            x = np.transpose(x, [1, 0, 2])
        sequence_length = np.array([12, 10, 9, 8], dtype=np.int64)

        y1, h1 = rnn1(x, sequence_length=sequence_length)

86
        seq_len = paddle.to_tensor(sequence_length)
F
Feiyu Chan 已提交
87 88 89
        mask = sequence_mask(seq_len, dtype=paddle.get_default_dtype())
        if self.time_major:
            mask = paddle.transpose(mask, [1, 0])
90
        y2, h2 = rnn2(paddle.to_tensor(x), sequence_length=seq_len)
91 92
        mask = paddle.unsqueeze(mask, -1)
        y2 = paddle.multiply(y2, mask)
F
Feiyu Chan 已提交
93 94 95 96

        np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5)

G
Guo Sheng 已提交
97 98 99
    def test_predict(self):
        predict_test_util(self.place, "SimpleRNN")

F
Feiyu Chan 已提交
100 101 102 103
    def runTest(self):
        self.test_with_initial_state()
        self.test_with_zero_state()
        self.test_with_input_lengths()
G
Guo Sheng 已提交
104
        self.test_predict()
F
Feiyu Chan 已提交
105 106 107 108 109 110 111 112


class TestGRU(unittest.TestCase):
    def __init__(self, time_major=True, direction="forward", place="cpu"):
        super(TestGRU, self).__init__("runTest")
        self.time_major = time_major
        self.direction = direction
        self.num_directions = 2 if direction == "bidirectional" else 1
113
        self.place = place
F
Feiyu Chan 已提交
114 115

    def setUp(self):
116 117 118 119
        # Since `set_device` is global, set `set_device` in `setUp` rather than
        # `__init__` to avoid using an error device set by another test case.
        place = paddle.set_device(self.place)
        paddle.disable_static(place)
F
Feiyu Chan 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
        rnn1 = GRU(16,
                   32,
                   2,
                   time_major=self.time_major,
                   direction=self.direction)
        rnn2 = paddle.nn.GRU(16,
                             32,
                             2,
                             time_major=self.time_major,
                             direction=self.direction)
        convert_params_for_net(rnn1, rnn2)

        self.rnn1 = rnn1
        self.rnn2 = rnn2

    def test_with_initial_state(self):
        rnn1 = self.rnn1
        rnn2 = self.rnn2

        x = np.random.randn(12, 4, 16)
        if not self.time_major:
            x = np.transpose(x, [1, 0, 2])
        prev_h = np.random.randn(2 * self.num_directions, 4, 32)

        y1, h1 = rnn1(x, prev_h)
145
        y2, h2 = rnn2(paddle.to_tensor(x), paddle.to_tensor(prev_h))
F
Feiyu Chan 已提交
146 147 148 149 150 151 152 153 154 155 156 157
        np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5)

    def test_with_zero_state(self):
        rnn1 = self.rnn1
        rnn2 = self.rnn2

        x = np.random.randn(12, 4, 16)
        if not self.time_major:
            x = np.transpose(x, [1, 0, 2])

        y1, h1 = rnn1(x)
158
        y2, h2 = rnn2(paddle.to_tensor(x))
F
Feiyu Chan 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172
        np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5)

    def test_with_input_lengths(self):
        rnn1 = self.rnn1
        rnn2 = self.rnn2

        x = np.random.randn(12, 4, 16)
        if not self.time_major:
            x = np.transpose(x, [1, 0, 2])
        sequence_length = np.array([12, 10, 9, 8], dtype=np.int64)

        y1, h1 = rnn1(x, sequence_length=sequence_length)

173
        seq_len = paddle.to_tensor(sequence_length)
F
Feiyu Chan 已提交
174 175 176
        mask = sequence_mask(seq_len, dtype=paddle.get_default_dtype())
        if self.time_major:
            mask = paddle.transpose(mask, [1, 0])
177
        y2, h2 = rnn2(paddle.to_tensor(x), sequence_length=seq_len)
178 179
        mask = paddle.unsqueeze(mask, -1)
        y2 = paddle.multiply(y2, mask)
F
Feiyu Chan 已提交
180 181 182 183

        np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5)

G
Guo Sheng 已提交
184 185 186
    def test_predict(self):
        predict_test_util(self.place, "GRU")

F
Feiyu Chan 已提交
187 188 189 190
    def runTest(self):
        self.test_with_initial_state()
        self.test_with_zero_state()
        self.test_with_input_lengths()
G
Guo Sheng 已提交
191
        self.test_predict()
F
Feiyu Chan 已提交
192 193 194 195 196 197 198 199


class TestLSTM(unittest.TestCase):
    def __init__(self, time_major=True, direction="forward", place="cpu"):
        super(TestLSTM, self).__init__("runTest")
        self.time_major = time_major
        self.direction = direction
        self.num_directions = 2 if direction == "bidirectional" else 1
200
        self.place = place
F
Feiyu Chan 已提交
201 202

    def setUp(self):
203 204 205 206
        # Since `set_device` is global, set `set_device` in `setUp` rather than
        # `__init__` to avoid using an error device set by another test case.
        place = paddle.set_device(self.place)
        paddle.disable_static(place)
F
Feiyu Chan 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
        rnn1 = LSTM(
            16, 32, 2, time_major=self.time_major, direction=self.direction)
        rnn2 = paddle.nn.LSTM(
            16, 32, 2, time_major=self.time_major, direction=self.direction)
        convert_params_for_net(rnn1, rnn2)

        self.rnn1 = rnn1
        self.rnn2 = rnn2

    def test_with_initial_state(self):
        rnn1 = self.rnn1
        rnn2 = self.rnn2

        x = np.random.randn(12, 4, 16)
        if not self.time_major:
            x = np.transpose(x, [1, 0, 2])
        prev_h = np.random.randn(2 * self.num_directions, 4, 32)
        prev_c = np.random.randn(2 * self.num_directions, 4, 32)

        y1, (h1, c1) = rnn1(x, (prev_h, prev_c))
        y2, (h2, c2) = rnn2(
228 229
            paddle.to_tensor(x),
            (paddle.to_tensor(prev_h), paddle.to_tensor(prev_c)))
F
Feiyu Chan 已提交
230 231 232 233 234 235 236 237 238 239 240 241 242
        np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(c1, c2.numpy(), atol=1e-8, rtol=1e-5)

    def test_with_zero_state(self):
        rnn1 = self.rnn1
        rnn2 = self.rnn2

        x = np.random.randn(12, 4, 16)
        if not self.time_major:
            x = np.transpose(x, [1, 0, 2])

        y1, (h1, c1) = rnn1(x)
243
        y2, (h2, c2) = rnn2(paddle.to_tensor(x))
F
Feiyu Chan 已提交
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
        np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(c1, c2.numpy(), atol=1e-8, rtol=1e-5)

    def test_with_input_lengths(self):
        rnn1 = self.rnn1
        rnn2 = self.rnn2

        x = np.random.randn(12, 4, 16)
        if not self.time_major:
            x = np.transpose(x, [1, 0, 2])
        sequence_length = np.array([12, 10, 9, 8], dtype=np.int64)

        y1, (h1, c1) = rnn1(x, sequence_length=sequence_length)

259
        seq_len = paddle.to_tensor(sequence_length)
F
Feiyu Chan 已提交
260 261 262
        mask = sequence_mask(seq_len, dtype=paddle.get_default_dtype())
        if self.time_major:
            mask = paddle.transpose(mask, [1, 0])
263
        y2, (h2, c2) = rnn2(paddle.to_tensor(x), sequence_length=seq_len)
264 265
        mask = paddle.unsqueeze(mask, -1)
        y2 = paddle.multiply(y2, mask)
F
Feiyu Chan 已提交
266 267 268 269 270

        np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(c1, c2.numpy(), atol=1e-8, rtol=1e-5)

271
    def test_predict(self):
G
Guo Sheng 已提交
272
        predict_test_util(self.place, "LSTM")
273

F
Feiyu Chan 已提交
274 275 276 277
    def runTest(self):
        self.test_with_initial_state()
        self.test_with_zero_state()
        self.test_with_input_lengths()
278
        self.test_predict()
F
Feiyu Chan 已提交
279 280


G
Guo Sheng 已提交
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
def predict_test_util(place, mode):
    place = paddle.set_device(place)
    paddle.seed(123)
    np.random.seed(123)

    class Net(paddle.nn.Layer):
        def __init__(self):
            super(Net, self).__init__()
            self.rnn = getattr(paddle.nn, mode)(16,
                                                32,
                                                2,
                                                direction="bidirectional",
                                                dropout=0.1)

        def forward(self, input):
            return self.rnn(input)

    x = paddle.randn((4, 10, 16))
    x.stop_gradient = False
    seq_len = paddle.to_tensor(np.array([10, 6, 8, 5]))
    mask = sequence_mask(seq_len, maxlen=10, dtype=x.dtype)
    mask = paddle.unsqueeze(mask, [2])
    rnn = Net()
    y, _ = rnn(x)
    y = y * mask
    loss = paddle.mean(y)
    loss.backward()
    optimizer = paddle.optimizer.Adam(
        learning_rate=0.1, parameters=rnn.parameters())
    optimizer.step()
    rnn.eval()
    y, _ = rnn(x)
    # `jit.to_static` would include a train_program, eval mode might cause
    # some errors currently, such as dropout grad op gets `is_test == True`.
    rnn.train()

    rnn = paddle.jit.to_static(
        rnn, [paddle.static.InputSpec(
            shape=[None, None, 16], dtype=x.dtype)])
    paddle.jit.save(rnn, "./inference/%s_infer" % mode)

    paddle.enable_static()

    new_scope = paddle.static.Scope()
    with paddle.static.scope_guard(new_scope):
        exe = paddle.static.Executor(place)
        [inference_program, feed_target_names,
         fetch_targets] = paddle.static.load_inference_model(
329
             "./inference/%s_infer" % mode, exe)
G
Guo Sheng 已提交
330 331 332 333 334 335 336 337
        results = exe.run(inference_program,
                          feed={feed_target_names[0]: x.numpy()},
                          fetch_list=fetch_targets)
        np.testing.assert_equal(
            y.numpy(), results[0])  # eval results equal predict results
    paddle.disable_static()


F
Feiyu Chan 已提交
338 339 340 341 342 343 344 345 346 347
def load_tests(loader, tests, pattern):
    suite = unittest.TestSuite()
    devices = ["cpu", "gpu"] if paddle.fluid.is_compiled_with_cuda() \
        else ["cpu"]
    for direction in ["forward", "backward", "bidirectional"]:
        for time_major in [True, False]:
            for device in devices:
                for test_class in [TestSimpleRNN, TestLSTM, TestGRU]:
                    suite.addTest(test_class(time_major, direction, device))
    return suite
348

349

350 351
if __name__ == '__main__':
    unittest.main()