cpu_quantize_pass.h 3.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <memory>
#include <string>
#include <unordered_map>
#include <utility>
W
wanghuancoder 已提交
21

22 23 24 25 26 27 28 29 30 31 32 33 34
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"

namespace paddle {
namespace framework {
namespace ir {

/*
 * Map variable name to tensor of scaling factors scaling it to MAX=1.0.
 * bool denotes whether quantization of the variable should be done to unsigned
 * type.
 */
W
wanghuancoder 已提交
35 36 37
class Graph;
class Node;

38 39 40 41 42 43 44 45 46 47 48
using VarQuantScale =
    std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

/*
 * Quantize all supported operators.
 */
class CPUQuantizePass : public FusePassBase {
 public:
  virtual ~CPUQuantizePass() {}

 protected:
49
  void ApplyImpl(ir::Graph* graph) const override;
50 51

  void QuantizeConv(Graph* graph, bool with_residual_data = false) const;
M
Michał Gallus 已提交
52
  void QuantizeFc(Graph* graph) const;
53
  void QuantizePool(Graph* graph) const;
54
  void QuantizeConcat(Graph* graph) const;
55
  void QuantizePriorBox(Graph* graph) const;
56
  void QuantizeTranspose(Graph* graph) const;
57
  void QuantizeReshape(Graph* graph) const;
58
  void QuantizeMatmul(Graph* graph) const;
59
  void QuantizeElementwiseAdd(Graph* graph) const;
60
  void QuantizeFusionGru(Graph* graph) const;
61

62
  void QuantizeInput(Graph* g, Node* op, Node* input, std::string input_name,
63 64 65
                     double scale_to_one, bool is_input_unsigned,
                     std::string scale_attr_name = "", float shift = 0.0,
                     std::string shift_attr_name = "") const;
66

67 68
  // quantize all inputs of given name with the same (minimum) scale
  void QuantizeInputs(Graph* g, Node* op, std::string input_name,
69 70 71
                      bool are_inputs_unsigned,
                      std::string scale_attr_name = "", float shift = 0.0,
                      std::string shift_attr_name = "") const;
72

73 74 75 76 77
  void DequantizeOutput(Graph* g, Node* op, Node* output,
                        std::string output_name, double scale_to_one,
                        bool is_unsigned,
                        std::string scale_attr_name = "") const;

78 79
  bool AreScalesPresentForNodes(const Node* op_node,
                                std::initializer_list<Node*> nodes) const;
80 81 82 83
  std::pair<bool, LoDTensor> GetScaleDataForNode(const Node* node) const;
  LoDTensor GetScaleTensorForNode(const Node* node) const;
  double GetScaleValueForNode(const Node* node,
                              bool* is_unsigned = nullptr) const;
84 85
  bool IsOpDequantized(const Node* node) const;
  bool IsOpQuantized(const Node* node) const;
86

87 88 89 90 91 92
  const std::string name_scope_{"quantize"};
};

}  // namespace ir
}  // namespace framework
}  // namespace paddle