elementwise_sub_op.cu 6.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15
#include "paddle/fluid/operators/elementwise/elementwise_op_function.cu.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
W
Wu Yi 已提交
16
#include "paddle/fluid/operators/elementwise/elementwise_sub_op.h"
17 18
#include "paddle/fluid/platform/complex128.h"
#include "paddle/fluid/platform/complex64.h"
19
#include "paddle/fluid/platform/float16.h"
G
gongweibao 已提交
20 21

namespace ops = paddle::operators;
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
namespace plat = paddle::platform;

namespace paddle {
namespace operators {

template <typename T>
struct SameDimsElemwiseSub<platform::CUDADeviceContext, T> {
  void operator()(const framework::ExecutionContext& ctx,
                  const framework::Tensor* x, const framework::Tensor* y,
                  framework::Tensor* z) {
    SubRangeFunctor<T> functor(x->data<T>(), y->data<T>(), z->data<T>());
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    platform::ForRange<platform::CUDADeviceContext> for_range(dev_ctx,
                                                              x->numel());
    for_range(functor);
  }
};

template <>
struct SameDimsElemwiseSub<platform::CUDADeviceContext, platform::float16> {
  void operator()(const framework::ExecutionContext& ctx,
                  const framework::Tensor* x, const framework::Tensor* y,
                  framework::Tensor* z) {
    auto size = x->numel();
46
    dim3 grid_size = dim3(((size + 7) / 8 + PADDLE_CUDA_THREAD_SIZE - 1) /
47 48
                              PADDLE_CUDA_THREAD_SIZE,
                          1);
49 50 51 52 53 54 55
    dim3 block_size = dim3(PADDLE_CUDA_THREAD_SIZE, 1);
    const half* x2 =
        reinterpret_cast<const half*>(x->data<platform::float16>());
    const half* y2 =
        reinterpret_cast<const half*>(y->data<platform::float16>());
    half* z2 = reinterpret_cast<half*>(z->data<platform::float16>());
    SameDimsElemwiseSubCUDAKernel<<<
56
        grid_size, block_size, 0,
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
        ctx.template device_context<platform::CUDADeviceContext>().stream()>>>(
        x2, y2, z2, size);
  }
};

template <typename T>
static __global__ void SimpleElemwiseSubGradCUDAKernel(const T* dout,
                                                       int64_t size, T* dx,
                                                       T* dy) {
  int col = blockIdx.x * blockDim.x + threadIdx.x;

  while (col < size) {
    dx[col] = dout[col];
    dy[col] = -dout[col];
    col += blockDim.x * gridDim.x;
  }
}

template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, plat::CUDADeviceContext>::value>::type
elementwise_sub_grad(const framework::ExecutionContext& ctx,
                     const framework::Tensor* x, const framework::Tensor* y,
                     const framework::Tensor* out,
                     const framework::Tensor* dout, framework::Tensor* dx,
                     framework::Tensor* dy) {
  dim3 block_size = dim3(PADDLE_CUDA_THREAD_SIZE, 1);
  auto size = x->numel();
85
  dim3 grid_size =
86 87
      dim3((size + PADDLE_CUDA_THREAD_SIZE - 1) / PADDLE_CUDA_THREAD_SIZE, 1);
  SimpleElemwiseSubGradCUDAKernel<
88
      T><<<grid_size, block_size, 0,
89 90 91 92 93 94 95
           ctx.template device_context<plat::CUDADeviceContext>().stream()>>>(
      dout->data<T>(), size, dx->mutable_data<T>(ctx.GetPlace()),
      dy->mutable_data<T>(ctx.GetPlace()));
}

}  // namespace operators
}  // namespace paddle
G
gongweibao 已提交
96

Q
QI JUN 已提交
97
REGISTER_OP_CUDA_KERNEL(
G
gongweibao 已提交
98
    elementwise_sub,
Q
QI JUN 已提交
99
    ops::ElementwiseSubKernel<paddle::platform::CUDADeviceContext, float>,
100 101
    ops::ElementwiseSubKernel<paddle::platform::CUDADeviceContext,
                              paddle::platform::float16>,
Q
QI JUN 已提交
102 103
    ops::ElementwiseSubKernel<paddle::platform::CUDADeviceContext, double>,
    ops::ElementwiseSubKernel<paddle::platform::CUDADeviceContext, int>,
104 105 106 107 108
    ops::ElementwiseSubKernel<paddle::platform::CUDADeviceContext, int64_t>,
    ops::ElementwiseSubKernel<paddle::platform::CUDADeviceContext,
                              paddle::platform::complex64>,
    ops::ElementwiseSubKernel<paddle::platform::CUDADeviceContext,
                              paddle::platform::complex128>);
Q
QI JUN 已提交
109
REGISTER_OP_CUDA_KERNEL(
G
gongweibao 已提交
110
    elementwise_sub_grad,
Q
QI JUN 已提交
111
    ops::ElementwiseSubGradKernel<paddle::platform::CUDADeviceContext, float>,
112 113
    ops::ElementwiseSubGradKernel<paddle::platform::CUDADeviceContext,
                                  paddle::platform::float16>,
Q
QI JUN 已提交
114 115
    ops::ElementwiseSubGradKernel<paddle::platform::CUDADeviceContext, double>,
    ops::ElementwiseSubGradKernel<paddle::platform::CUDADeviceContext, int>,
116 117 118
    ops::ElementwiseSubGradKernel<paddle::platform::CUDADeviceContext, int64_t>,
    ops::ElementwiseSubGradKernel<paddle::platform::CUDADeviceContext,
                                  paddle::platform::complex64>,
Q
QI JUN 已提交
119
    ops::ElementwiseSubGradKernel<paddle::platform::CUDADeviceContext,
120
                                  paddle::platform::complex128>);
121 122 123 124 125 126 127 128 129
REGISTER_OP_CUDA_KERNEL(
    elementwise_sub_grad_grad,
    ops::ElementwiseSubDoubleGradKernel<paddle::platform::CUDADeviceContext,
                                        float>,
    ops::ElementwiseSubDoubleGradKernel<paddle::platform::CUDADeviceContext,
                                        double>,
    ops::ElementwiseSubDoubleGradKernel<paddle::platform::CUDADeviceContext,
                                        int>,
    ops::ElementwiseSubDoubleGradKernel<paddle::platform::CUDADeviceContext,
130 131 132 133 134
                                        int64_t>,
    ops::ElementwiseSubDoubleGradKernel<paddle::platform::CUDADeviceContext,
                                        paddle::platform::complex64>,
    ops::ElementwiseSubDoubleGradKernel<paddle::platform::CUDADeviceContext,
                                        paddle::platform::complex128>);